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Abstract—In this paper we report on the performance of
ASR systems on a fairly difficult problem - that of transcrib-
ing voicemail. Voicemail represents spontaneous telephone
speech recorded over a variety of channels - consequently, it
represents a testbed that contains all the most challenging
problems in speech recognition. In the course of working on
this problem, several algorithms were developed that focus
on different building blocks of a typical ASR system, such
as lexicon design, feature extraction, hypothesis search and
speaker adaptation. The goal of this paper is to bench-
mark the improvements provided by these algorithms, as
well as other standard technigues, on a voicemail test set.
Though the techniques are benchmarked on voicemail test
data, their scope is not restricted to this domain, as they
address fundamental aspects of the speech recognition pro-
cess.

I. INTRODUCTION

In the last few years, several advances have been made in
improving the error rate of continuous-speech-recognition
systems. For instance, the word-error rates on read speech
(as in the Wall Street Journal database) hover in the neigh-
borhood of 7-8 %. However, the performance on sources
of spontaneous speech is still relatively poor. For instance,
word-error rates on the Switchboard corpus [1] and Voice-
mail corpora are around 30%. This is all the more unfortu-
nate because spontaneous speech is much more characteris-
tic of real-world speech. Consequently, there is still a great
deal of improvement that has to be made to make speech
recognition systems practical and useable in real life. In
this paper, we report on a number of recently developed
algorithms, that help to improve the accuracy of speech
recognition systems, and benchmark the performance of
these algorithms on a voicemail transcription task.

There are several steps involved in speech recogni-
tion systems today, as shown in Fig. 1. In Block 1,
multi-dimensional features are extracted from the sampled

0 We would like to acknowledge the support of DARPA under Grant
MDA972-97-C-0012 for funding part of this work.

speech signal; in Block 5, a search procedure hypothesizes
a word sequence that has the maximum probablility given
the observed feature vectors. This step is driven by sev-
eral components (i) a lexicon (Block 2) that defines the
possible words that can be hypothesized in the search and
where each word is represented as a linear sequence of fun-
damental phonetic units, (ii) a language model (Block 3)
that models the linguistic structure — this model incorpo-
rates purely linguistic knowledge and does not contain any
knowledge about the relationship between the feature vec-
tors and the words, (iii) an acoustic model (Block 4) that
models the relationship between the feature vectors and
the fundamental phonetic units — the fundamental pho-
netic units are modeled using HMM’s and the output dis-
tributions of the HMM’s are used to model the probability
density of the observed feature vectors for a given phone.
We report on the performance of algorithms that address
several different blocks of the speech recognition process in
Fig. 1, and that significantly improve the overall accuracy
of speech recognition. Though the performance of some of
these algorithms has been reported by varying subsets of
the authors in prior conferences and workshops - the pur-
pose of this paper is to evaluate the collective efficacy of
these algorithms and to provide additional details about
them.

The paper is organized as follows: In Section II we de-
scribe the different training and test sets that were used
in the experiments. We also describe the bagic operation
of our speech recognition system, and the various systems
that we experimented with. In Section III we address the
problem of lexicon design (Block 2 of Fig. 1}, and describe
a data driven method, to find compound words to aug-
ment the lexicon. In Section IV, we describe experiments
related to the acoustic model (Block 1 of Fig. 1), including
several feature extraction and adaptation techniques. In
Section V, we revisit the MAP decoding framework used
in speech recognition and apply a ”consensus hypothesis”
processing technique to find the best hypothesis {in the
minimum expected word error sense) from a word graph
(Block 5 of Fig. 1). Finally, in Section VI, we describe
the performance improvements obtained by adapting the
acoustic models to the specific test speaker.



JI. BACKGROUND
A. Training/Test data

The Voicemail training database comprises 12645 mes-
sages (114 hours of speech), which corresponds to approxi-
mately 1.167M words of text. We will refer to this training
database as T-VML. In order to facilitate a quicker tu-
raround of experiments, and to provide results on publicly
available data sets, and toe examine the effect of training
data on system performance, we defined several subsets of
this database

o T-VM2 comprises of 6501 messages (53 hours of
speech)

e T-VM3 comprises of 1801 messages (15 hours of
speech) - available as Voicemail Corpus Part I from
LDC

« T-VM3b comprises of 2048 messages (15 hours) - soon
to be made available as Voicemail Corpus Part 11 from
LDC

¢ T-VM4 - comprises of all the messages in T-VM3 and
T-VM3b

The size of the testing vocabulary is 19k words for sys-

tems trained on T-VM1, 11.5k for systems trained on T-
VM2, and 8.8k words for systems trained on T-VM4 and
6.5k words for systems trained on T-VM3. The test set
comprises of 105 messages (of these, 42 are currently avail-
able as part of the LDC Voicemail Corpus Part I}, and we
expect to make an additional 50 messages from this set
available as part of the Voicemail Corpus Part LI. The lan-
guage model is a trigram. We will refer to the test set with
105 messages (52 minutes of speech) as E-VM1. We also
define a subset of this test set that includes 92 messages
(35 minutes of speech) and refer to this as E-VM2.

B. System Description

The speech recognition system uses a phonetic repre-
sentation of the words in the vocabulary. Each phone is
modelled with a 3-state left-to-right HMM. Further, we
identify the variants of each state that are acoustically dis-
similar by asking questions about the phonetic context in
which the state occurs. The questions are arranged hi-
erarchically in the form of a decision tree, and its leaves
correspond to the basic acoustic units that we model. A
feature vector is extracted every 10 ms, and we model the
probability density function (pdf) of the feature vector for
each leaf of the decision tree with a mixture of gaussians.
However, rather than use the probability density provided
by this model, we use a "rank” based system, where all
the leaves of the decision tree are first ranked on the basis
of their probablity densities for a particular feature vector.
Subsequently, when we need to compute the probability
of an observation given a leaf, we look up the rank of that
leaf, and convert that to a probability using a table {for ex-
ample, leaves with rank of 1 invariably will have a higher
probability than leaves with a much poorer rank}. For
futher details, see [4]. The hypothesis search that is used
to find candidate word sequences that have a reasonable
probability is a modified version of the stack search, that
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System FSP #L #G Trg
VMla Mel Ceps 2063 | 68480 | T-VM2
VMI1b Mel Ceps + MLD | 2028 | 68676 | T-VM2
VMilb.s Mel Ceps + MLD | 1808 | 35347 | T-VM3
VMlbm | Mel Ceps + MLD | 2009 | 54351 | T-VM4
VM1b.1 Mel Ceps + MLD | 2778 | 259876 | T-VM1
VMle Mel Ceps + VTL | 2063 | 68480 | T-VM2
VM1d Mel Ceps + VIL | 2104 | 70426 | T-VM2
+ MLD
VMile Mel Ceps + VTL | 2104 | 70426 | T-VM2
+ MLD
VMle.s Mel Ceps + VTL | 1877 | 35883 | T-VM3
+ MLD
VMlem | Mel Ceps + VIL | 2044 | 54381 | T-VM4
+ MLD
VMleld Mel Ceps + VTL | 3112 | 265686 | T-VM1
+ MLD + FMLLR
+ MLLR
VM2a PLP Ceps 2051 | 68300 | T-VM2
VM2b PLP Ceps + MLD j 2022 | 68944 | T-VM2
VM2c PLP Ceps + VTL | 2051 | 68300 | T-VM2
VM2d PLP Ceps + VTL | 2043 | 69140 | T-VM2
+ MLD
VM2e PLP Ceps + VTL | 2043 | 69140 | T-VM2
+ MLD + FMLLR
+ MLLR
TABLEI

SYSTEMS DESCRIPTION

we refer to as an envelope search. For further details, see
[5].

The baseline feature vector is the Mel cepstrum [8] aug-
mented with its 1st and 2nd temporal derivatives (which
we refer to as deltas). We will refer to this as the Mel
cepstral feature space. We also present experiments that
used the PLP cepstra [9] instead of the Mel cepstra. Both
the Mel and PLP cepstra were mean-normalized on a per-
sentence basis. Some of the systems that we experimented
with spliced together 9 frames of cepstra (the cepstra at
the current frame and 4 frames before and after the cur-
rent frame) and projected it down to a lower dimension by
means of a linear transform. We will refer to this feature
space as the projected feature space.

During the course of running these experiments, we
built a number of ”baseline” acoustic models The improve-
ments accruing from specific algorithms are benchmarked
on these baseline systems. We summarize the models that
we worked with in Table 1. The column F'SP indicates
the type of feature space (the dimensionality of the space
is 39 for all systems), # 1 indicates the number of leaves in
the decision tree, #( indicates the numnber of gaussians,
and T'rg indicates the training data that was used to build
the system.
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I. LEXICON DESIGN

The lexicon is a fandamental component of speech recog-
nition systems as ¥ defines the words that can be output
by the system. If the lexicon contains all words that could
be uttered by the|speaker, and the words are dissimilar
and can be easily Hisambiguated on the basis of the lan-
guage and acoustif model, this would lead to very good
accuracy in speecH recognition. This is unfortunately not
the case, however] it is generally the case that decoding
errors are more cqmmon in shorter words [6]. One pos-
sible method to c4pitalize on this observation is to com-
bine groups of worlts that co-occur, into compound words.
As these compounll words would now have relatively long
baseforms, they cofild lead to fewer overall errors. Another
observation in confection with spontaneous speech is that
erossword co-articplation is very common because of the
casual nature of thp speech and the fast speaking rate, For
instance, the phrape ’going to take’ could be pronounced
as 'gontake = G RO N T AE KD’. Another advantage
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priate baseform fo

A. Measures to se

ing compound words is that these co-
can be modeled by adding the appro-
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ect compound words
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ation variants to
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candidate pairs for compound words
barefully in order to avoid this increase.
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ing corpus.
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together and
words.
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ore rarely in the pair context of other

uld ideally present coarticulation effects
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should be diff
lation.
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sure picks words
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hat occur frequently together, it does
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cur frequently wit
modified measure

other words. Consequently, we used a
- the geometrical average of the direct
probabilities [6] — to rank word pairs

and reverse bigr
and select comp;fnd words. The direct bigram probability

between the word
and the reverse b
P.(W; = wilWyy
mated from the tn

Py (wj|wi
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Wi and wy is P_f(WHnl = ijWt = w,;),
gram probability between the words is
w;). Both quantities can be esti-
hining corpus as follows:

P(Wipq = wy, Wy = w;)
P(W; = w;)
P(Wip1 = w;, W = wy)
P(Wit1 = wy)

(1)

E-VM1
42.0%

Sys. | Nb.
VMla | O

Examples

AREA-CODE,

GIVE-ME, A-CALL,

E-MAIL, TAKE-CARE
GIVE-ME-A-CALL,
LET-ME-KNOW,
AS-S00N-AS,
THANK-YOU-VERY-MUCH
TALK-TQ-¥YOU-LATER-BYE,
THANKS-A-LOT,
PLEASE-GIVE-ME-A-CALL

TABLE I1
WORD ERROR RATE FOR LEXICON WITH COMPOUND WORDS

VMla | 70 40.5%

The geometrical average of the direct and the reverse
bigram is given by:

P(wz’}wj)
P(w:)P(w;)
(2)

0 < LM{(w;,w;) < 1 for every pair of words (w;, w;).
A high value for LM (w;, w;) means that both the direct
and the reverse bigrams are high for (w;, w;) or otherwise
stated, the probabilities that w; is followed by w; and w;
is preceded by w; are high which makes the pair a good
candidate for a compound word. In our implementation we
selected all pairs of words for which this measure is greater
than a fixed threshold and for which the raw count of the
word pair was greater than another threshold.

LM (w;,w;} = \/Pf(wj fwi) Pr(w;|w;) =

B. Results

We report results here with the compound-words se-
lected according to ( 2). We started with a lexicon with no
compund words and applied the measure iteratively to the
corpus resulting in increasing number of compound words
per iteration. Table Il summarizes the total number of
new compound words, examples of such words, and the
word error rate. In summaty, it may be seen that adding
compound words based on the LM measure results in a
1.5% absolute (3.6% relative) improvement in the word er-
ror rate. This vocabulary (with compound words) and the
associated trigram LM will be used in all Voicemail related
experiments in subsequent sections.

IV. FEATURE EXTRACTION

The most commonly used feature extraction schemes ex-
tract a multi-dimensional feature vector from the sampled
speech signal at a uniform frame rate (typically every 10
ms). Quite often the procedure for extracting this feature
vector is motivated by the workings of the human audi-
tory system. As the human auditory system simulates a
log-spaced filter-bank, with the sensitivity to the energy
in each channel following a logarithmic relationship, most
feature extraction schemes (examples are Mel cepstra [8]
and PLP cepstra [9]) are based on mimicking these steps.

The d-dimensional feature vectors extracted in this man-
ner every 10ms contain information about the local spec-
tral characteristics of the speech signal, however, they do
not contain any information related to the trajectory of the
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training data comprising a set of feature vectors for each
phonetic class. Ddnoting the i*" feature vector for class j
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an of the entire data. The goal of LDA

is to find a projectfion # such that the average within-class

variation in the p
distance between

rojected space is minimized, while the

is maximized. As

the class means in the projected space
the average-within-class-covariance and

between-class-covdriance matrices in the projected space
are given by 8W& and §B67 respectively, the LDA ob-
jective is encapsullited in the function:

Even though the
linear, there is a
posed eigenvectors
ues of the generall

_ 1oBo7|

T0) = g

(4)

bbjective function in (4} is highly non-
losed form solution given by the trans-
corresponding to the p largest eigenval-
zed eigenvalue problem: Bx = AWz.
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In the LDA objective function, the average-within-class-
covariance was minimized without considering the individ-
ual class covariances. Recently [11], [12], this shortcoming
was addressed by modifying the LDA objective function (4)

as follows:
li[ leBeT I\
|6Z,87| -

i=1

i0BaT|N

7 (5)
I1 16,671
=1

leading to a HDA objective function. Fig 2 shows the dif-
ference in the projections obtained from LDA and HDA
for the 2-class case. Clearly, the HDA projection provides
a much lower classification error than LDA. Taking log

Classification error

Fig. 2. Difference between LDA and HDA.

and rearranging terms in ( 5), the HDA objective may be
written as:

J
H(®) 2> —N;log|6%;67| + Nlog |[6B6T|  (6)

=1

Another interpretation of the objective function in ( 6)
arises by noting that the first term (the summation) es-
sentially equals the log-likelihood of the projected fea-
ture vectors, assuming a single full covariance gaussian
model for each class, with mean and covariance given by
ft; = Bu; and ﬁj = BEjGT, 1 < j < J. The second term,
Nlog |0B67| represents the distances between the class
means, fi;, in the projected feature space. Consequently,
the objective function ( 6) is really trying to maximize the
log-likelihood of the data while at the same time maximiz-
ing the separation between the class means — consequently
we refer to this as the Mazimum Likelihood Discrimimant
{MLD) Projection.

B. Bringing in the assumplion of diagonal covariances

One of the characteristics of the projection described
above is that the dimensions of the projected feature vec-
tors often tend to be highly correlated. However, due to
computational considerations, most ASR systems model
the pdf of the projected feature vectors with mixtures of
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diagonal gaussiards, which in effect assumes that the di-
mensions are independent. The inaccuracies associated
with this assumption often nullify any benefit associated
with designing the transformation in the first place. Con-
sequently, recent |work [13], [14] has focused on finding a
transformation that can be applied to the correlated fea-
ture vectors, such|that the transformed feature vector more
or less satisfies the diagonal covariance assumption.

The objective of these methods is to find a transforma-
tion 3 that can be composed with the projection, # such
that the covariance of the transformed feature vectors is as
close to diagonal|as possible. This is equivalent to mini-
mizing the difference in the log-likelihood of the data, com-
puted with full covariance and diagonal covariance models,
ie.,

] = GrgmMGTyc Roxe

S7, ~ 25| (tog | diag(wS;47)| — log l¥S,7]) ()

Note that the gbjective function (6) is invariant to sub-
sequent feature space transformations, hence the objective
function (6) is the same for the composite transform ¢
as for 8. Consequently, the process of finding the MLD
projection first involves finding 6 to maximize ( 6) and
subsequently finding a ¥ to maximize { 7). Both objective
functions have no closed-form solutions; consequently, op-
timization packages such as the Fortran NAG library have
to be used to fin ‘ the solution.

C. Bringing in the assumption of canonical feature space
and speakers |

The formulation presented in the previous sections as-
sumed that the projection is computed to perform dimen-
sionality reduction at the first {(speaker-independent) stage
of the processing] Now, the main objective of the projec-
tions was to minimize the variation of the projected fea-
ture within a particular class, while maximizing the dis-
tance between the projected means of the different classes.
As the training data for a speaker independent system is
comprised of speqsch from a number of different speakers,
the variation of the projected features within a particu-
lar class has an inherent component as well as an inter-
speaker component. For the purposes of discriminating
between phonetid classes, we are really interested only in

focusing on the i
speaker variation

1herent variation, rather than the inter-
In order to achieve our objective, we can

take the help of speaker adaptation techniques [18] that are
focused on improving the performance of speech recogni-

tion systems by °

canonicalizing” the feature space ie. by

eliminating as much of the inter-speaker variability as pos-

gible. This is in

the feature space

ffect equivalent to first ”canonicalizing”
with some speaker normalizing scheme

and then computing a discriminant transform that sepa-
rates the phonetic classes out in the canonicalized space.

We present expe;
show that compu

dmental results in the next section that
ting the MLD projection in the canonical

System | Feature space E-VM1
VMla | Mel Cepsira 40.5%
VMI1b | Mel Cepstra + MLD Proj | 39.1%
VM2a | PLP Cepstra 40.3%
VM2b | PLP Cepstra + MLD Proj | 39.6%

TABLE III
WORD ERROR RATE FOR CEPSTRA AND MLID FEATURES

System | Feature space E-VM1
VMilc | Mel Cepstra + VILN | 38.9%
VM1d | Mel Cepstra + VILN | 36.8%
+ MLD Proj
VM2¢ | PLP Cepstra + VILN | 38.2%
VM2d | PLP Cepstra + VITLN | 38.3%
+ MLD Proj
TABLE IV
WORD ERROR RATE FOR ”CANONICALIZED" CEPSTRA AND MLD
FEATURES

space vields better relative improvements than the original
feature space.

D. Results

The word error rates obtained on the voicemail test set
(E-VM1) for the cepstral and projected feature spaces are
shown in Table III. The models and vocabulary were de-
scribed in Section 1I-B and Section III-B The MLD projec-
tion was computed on the baseline mean-normalized Mel
and PLP cepstra, and can be seen to provide a relative im-
provement of 3.5%-1.7% over the baseline cepstral space.

We also experimented with first ” canonicalizing” the fea-
ture space and then computing the MLD in the canonical
space. For the purpose of these experiments, we chose
VTLN [18] as the canonicalization scheme. Details of
VTLN are given in Section VI-A however, for the purpose
of these experiments, it is sufficient to just treat VILN as
some scheme for removing the inter-speaker variability in
the feature vectors. The results are presented in Table IV
and show that the MLD projection yields a relative im-
provement of 5.4% in performance for the Mel cepstra. In-
terestingly enough, the MLD projection consistently yields
less improvement for the PLP cepstral space compared to
the Mel cepstral space.

V. HYPOTHESIS SEARCH

The most commonly used decoding paradigm for speech
recognition is the maximum aposteriori (MAP) rule which
is used to guide the hypothesis search.

w* = argmaz,plw/y) = argmazypy/w)p(w)/p(y) (8)

where w represents the sequence of decoded words and
y= ¥} denotes the observed feature vectors corresponding
to the sentence. In [15], an alternative scoring procedure
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ruide the hypothesis search. If {w, w')
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o y

esized sequence

then the objectivy

dw being the reference word sequence,
of the decoding procedure should be to

minimize the avenage expected loss. This may be written

If I(w, w ) is taker

argming, Y 1(w,w )p(w/y) 9)

to be a delta function, representing the

sentence error rafe, then ( 9) can be seen to reduce to
the MAP decodink rule. Hence, the MAP decoding rule is
equivalent to minjmizing the sentence error rate, However,
as the quantity of interest in most speech recognition appli-
cations is the worfl error rate, it was suggested in [15] that
l{w,w') be repladed by the word error rate between the
hypotheses w and|w . In [15] this decoding rule was imple-
mented to select 3 hypothesis from the N-best hypotheses
produced by a MAP decoder. In [16] this decoding rule was
applied to a word |attice (that was produced by a MAP de-
coder) to obtain g ”consensus hypothesis” as follows: The
word lattice (graph) produced by a MAP decoder is first
converted into a ¢hain like structure by merging different
paths in the graph. This is shown in Fig 3.

The components of the chain represent parallel se-
quences of wordss The criterion for merging two paths
in the graph is rplated to the time overlap between the

paths and the p
quences in the tw
the complete sent]
nents, where each

onetic similarity between the word se-
b paths. The loss function evaluted over
ence may now be broken into K compo-
term in the summation corresponds to

a componenti, of the chain.

The objective furl

wi = argmin,; Z [(wi, wy )p(we [y)

For 1wy, w;) t0 §

(w,w) =Y lws, wy) (10)
k

ction in { 9) may now be rewritten as

(11)

Wi

mulate the word error rate, as each com-

ponent of the ch

in contains only words in parallel, it has
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System | Feature space E-VM1 E-VM1
MAP | Consensus
VMI1b | Mel Cepstra + | 39.1% 38.0%
MLD Proj
VM2bh | PLP Cepstra + | 39.6% 38.2%
MLD Proj
TABLE V

WORD ERROR RATE WITH MAP AND CONSENSUS HYPOTHESIS

to be defined as a delta function. Consequently we have

wiy = argminy, [1 — plwy /y)] (12)
and minimizing the loss is equivalent to picking the most
probable word in each component (which is equivalent to
applying the MAP rule in each component of the chain).
The concatenation of these words represents the consensus
hypothesis. Further details are given in [16].

A, Results

The word error rates obtained by finding the consensus
hypothesis rather than the MAP hypothesis are summa-
rized in Table V. It may be seen that there is a consistent
2.8%-3.5% relative improvement in performance.

VI. AcousTiC MODEL - ADAPTATION

Due to the widely varying nature of speech, and the dif-
ficulty of the speech recognition task, speaker-independent
systems are only able to provide a mediocre level of perfor-
mance on this task. One of the methods that has emerged
as an efficient way to improve system performance in such
cases is speaker adaptation. In speaker adaptation, some
samples of speech from a particular speaker are used to
adapt the speech recognition models so as to better match
the test speakers speech. In order to adapt the models,
both the speech from the test speaker as well as the as-
sociated transcription are necessary. However, in the case
of voicemail, as the transcription of the speech data is not
available, a speaker-independent system is used to tran-
scribe the data and the resulting (erroneous) transcriptions
are used in the adaptation procedure. This is referred to as
unsupervised adaptotion. We experimented with two pop-
ular adaptation methods that are summarized in the next
two sections.

A. Vocal Tract Length Normalization {VTLN)

This technique is based on the observation that the mod-
els in a speaker-independent ASR system are forced to
model the pdf of the feature vectors for different phonetic
classes and different speakers. If the inter-speaker vari-
ation in these feature vectors is large, it could dominate
the overall variance of the model. However, the goal of
speech recognition systems is to accurately model differ-
ences between the different phonetic classes - irrespective
of the speaker. Consequently, the idea in VTLN is to ex-
tract acoustic observations in such a way that the feature
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vectors for a partjcular phonetic class look similar for dif-
ferent speakers. Whe method is based on the observation
that a dominant source of difference between speakers is
their pitch and fofmant ranges. Consequently, if the power
spectrum for a speaker is scaled in frequency so that the
formant frequencies for the speaker take on a target value
(the target being the value of the formant frequency for
a cenonical spealer), then it would eliminate the inter-
speaker source of variability in the acoustic feature vectors.
The scaling of the frequency axis is assumed to be piece-
wise linear [18], and is parametrized by a slope a. This
slope a is selected so as to maximize the likelihood of the
speaker’s data with respect to a canonical-speaker model,
which models the cepstral feature vectors for each pho-
netic class for the canonical speaker. The procedure for
normalizing the fpature vectors for a given speaker are as
follows: - the pover spectrum is computed for a frame of
speech from the speaker, and the frequency axis is warped
by one of a discreEe set of values. The cepstra are now ex-
tracted from the frequency-warped spectra, and the nor-
malized 3 likelihood of the warped cepstra is computed
with the model of the canonical-speaker. This is done in a
supervised manne‘r using the transcriptions produced from
a speaker—mdepe]ident system to label the phonetic class
for each feature w:ctor and using the corresponding pdf of
the canonical mocﬂe] to compute the probability density of
the feature vector, Subsequently, the warp scale that gives
the highest likelihood is chosen and the speaker’s data is
warped accordingly. This procedure is carried out for all
the speakers in the training data as well as the test speaker.

A.1 Results

The experimenial results obtained with VTLN adapata-
tion are shown in; Table VI — it may be seen that VILN
provides a relative improvement of 7.6%-7.9% in the orig-
inal cepstral space, and 13.6%-8.2% when the VTLN fea-
ture vectors are frojected with an MLD projection.

B. Linear Transform Adaptation

The VILN preccedure described earlier tries to map the
feature vectors of the training and test speakers into a
canonical space by warping the frequency axis in a speaker-
dependent manner. However, this simple warping method
is not sufficient to eliminate all speaker-dependent varia-
tion and produce a truly canonical feature space. There-
fore, when the test speaker’s data is warped using the same
method, the procidure is only a crude approximation to re-

3 One of the subtleties associated with the selection of the warp
scale is related to the normalization of the likelihoods obtained for
different warp scalen. The VTLN warping can be thought of as a
mapping from the ariginal feature vector x¢ to y:. It is possible to
choose the mapping in such a way that the y; have as little variance
as possible, and are as close as possible to the means of canonical
speaker model - this would automatically increase the likelihood,
without achieving the desired objective. Consequently, the likelihood
computed with the canonical model has to be normalized by some
measure of the coviriance of the warped features. We do this by
computing the covariance of the warped feature vectors for all the
speakers data, and normalizing by the determinant of this covariance
matrix. |

System | Feature space E-VM1
VMla | Met Cepstra 40.5%
VMlc | Mel Cepstra + VILN | 37.4%
VMI1d | Mel Cepstra + VTLN | 35.0%
+ MLD Proj
VM2a | PLP Cepstra 40.3%
VM2c¢ | PLP Cepstra + VILN | 37.1%
VM2d | PLP Cepstra + VTLN | 37.0%
+ MLD Proj
TABLE VI

CONSENSUS WORD ERROR RATE FOR V'L NORMALIZED FEATURES

ducing the discrepancy between the test speaker’s feature
vectors and the acoustic model. As a result, there is suf-
ficient justification to investigate other methods that try
to reduce the mismatch between the test speaker’s feature
vectors and the acoustic model even further.

The next step in reducing this mismatch is to hypoth-
esize a feature transformation of the training speakers
data that makes the training data (and consequently, the
acoustic model) look more similar to the test speaker’s
data. We investigate an adaptation method that con-
strains the transformation to be affine [19] and compute
the transformation such that the likelihood of the test
speaker’s adaptation data is maximized by the transformed
acoustic model — we refer to this method as feature-space
maximum-likelihood linear regression (FMLLR). FMLLR
computes a single affine transformation that is applied to
the means and covariances of all the gaussians in the acous-
tic model. The mismatch between the transformed acous-
tic model and the test speaker’s data can be reduced even
further by further transforming the means of the acous-
tic model. This is done using the well-known MLLR [20]
method. For the sake of completeness, we will briefly de-
scribe the formulation for these two steps next.

Let pij{(z¢) = N {tu,j, Su,;) denote the pdf of the j**
gaussian of the I** class in the VTLN warped feature
space, ;. The FMLLR method hypothesizes a transfor-
mation of the VILN warped training data of the form
¥y = Afmurzt Consequently, the pdf of the trans-
formed data is given by scaling the orlgmal pdf by the
Jacobian of the transformation, ie. p ) = o =

Afm”ryt} /|Agmiir|- The log-likelihood of the adaptation
data is now given by

Zcm ) *
[0

[(A}fnuryt — 1) T (At — Hrg) + lAfmurl] (13)

LAfmlh- (yl

where ¢; ;(t) denotes the occupancy count for the jt* gaus-
sian of the I*® class at time ¢, and y; denotes the adapta-
tion data from the test speaker. The objective function
( 13) has no closed form solution, consequently, gradient
descent based optimization methods have to be used to
solve for Agmur. Note that after this transformation has
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System | Feature space E-VM1

VM1d | Mel Cepstra + VILN + 35.0%
MLD Proj

VMle | Mel Cepstra + VILN + 34.3%
MLD Proj + FMLLR+MLLR

VM2d | PLP Cepstra + VILN + 37.0%
MLD Proj

VM2e | PLP Cepstra + VILN + 35.5%
MLD Proj + FMLLR+MLLR

TABLE VII
CONSENSUS WORD ERROR RATE FOR FMLLR+MLLR ADAPTATION

E-VM1
System | MAP | Consensus
VM1b | 39.1% 38.0%
VMle | 34.9% 34.3%
VM2b | 39.6% 38.2%
VM2 | 35.9% 35.5%
Rover | 33.4% 32.7%
TABLE VIII

WORD ERROR RATES WITH SYSTEM COMBINATION

by an iterative process whereby the first two ASR system
hypotheses are aligned to form a WTN; subsequently the
next ASR hypothesis is aligned to the WTN, and so on.
Finally, the composite WTN is searched by a voting or
scoring module to select the best scoring word sequence.

A. Results

We implemented the ROVER system combination tech-
nique to combine the outputs of the various systems that
we experimented with. We applied the combination tech-
nique to both the MAP hypothesis produced by the ASR
system, as well as the consensus hypothesis of Section V.
The results are given in Table VI - and show a consis-
tent relative improvement of 4.3%-4.6% for the MAT and
consensus hypothesis case by combining the outputs of the
two systems.

VIII. EFFECT OF TRAINING DATA

All the experimental results we have reported so far were
on systems that were trained on the T-VM2 database. In
order to understand the effect of the amount of training
data on the system performance, we also experimented
with systems that were trained on the complete Voicemail
corpus T-VM1 comprising 114 hours of speech, and the
subsets T-VM3 comprising 15 hours of speech, and T-VM4
comprising 30 hours of speech. The results are summa-
rized in Table IX, and shown plotted in Fig. 4. Both the
speaker-independent WER appear to be almost a linear
function of the amount of training data - with additional
data likely to help more in the case where the baseline is
trained on a small amount of data.
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System

Feature Space E-VM1 | E-VM2

VMlb

Mel Cepstra 331% | 38.0%

+ MLD Proj

VMlbs

Mel Cepstra 47.8% | 47.0%

+ MLD Proj

VMIlbm

Mel Cepstra 41.9% | 40.9%

+ MLD Proj

VM1bld

Mel Cepstra 30.2% | 30.1%

+ MLD Proj

VMle Mel

+ MLD Proj + FMLLR

Cepstra + VILN 34.9% | 33.7%

+ MLLR

VMle_s Mel

+ MLD Proj + FMLLR

Cepstra + VILN 43.3% | 42.7%

+ MLLR

VMle_m Mel

+ MLD Proj + FMLLR

Cepstra + VILN 38.1% | 37.0%

+ MLLR

VMleld Mel

+ MLD Proj + FMLLR

Cepstra + VILN 27.9% | 27.2%

+ MLLR

TABLE IX

MAP WORD ERRQR RATES AS A FUNCTION OF TRAINING DATA
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IX. CONCLUSION

e report on the evolution of the word
on a large vocabulary telephone speech
ag typified in voicemail. A number of
leveloped and evaluated in the context
ontributed significantly to reducing the
ithms span the areas of lexicon design,
combination of hypotheses, and speaker
ustic models and were instrumental in
error rate on Voicemail data to around
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More specifically, the algorithms and their relative con-

tributions were :

« a lexicon design technique that yields up to a 3.6%
relative improvement in performance

» a novel linear projection (MLD) that can be applied
on the extracted features, and yields up to a 5.4% rel-
ative improvement in performance. We also show that
these methods are better applied on features that have
already been canonicalized to eliminate inter-speaker
variation

« use of a consensus hypothesis algorithm that yields up
to a 3.5% relative improvement in performance

o VILN adaptation provides up to 4.1% relative im-
provement in performance

» adaptation by linear transforms FMLLR+MLLR pro-
vides up to a 4% relative improvement in performance

« system combination methods that yields up to a 4.7%
relative improvement in performance

o MFCC speaker independent WER of 30.3% and
speaker adapted WER of 27.7%

« speaker adaptation provides a relative improvement
of 9.4% for systems trained on 15 hours, and 7.6% for
systems trained on 114 hours - this is consistent with
the common wisdom that performance improvements
due to adaptation reduce as the system is trained on
more data

+« WER performance as a function of training data shows
that the WER is almost linearly related to the amount
of training data ¢
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XI. APPENDIX

The Voicemail transcription task started at IBM in 1997,
motivated by the fact that voicemail represents a large
amount of real world spontaneous speech with potential
applications such as message summarization and informa-
tion extraction; however, the performance of automatic
speech recognition systems on this type of speech does not
appear to have been the focus of any previous research ef-
forts. Further, though several speech databases exist for
the purpose of carrying out research in speech recognition
(Wall Steet Journal, Switchboard/Callhome {1], Hub 4 [2],
ATIS) voicemail speech is not well represented in any ex-
isting database.

A. Creation of a voicemail database

Voicemail data is unfortunately fairly difficult to col-
lect because of privacy and legal issues. We were able to
surmount some of these difficulties by collecting the data

¢ This is contrary to the common wisdom that the WER is depen-
dent on the log of the amount of training data. We do see the slope
of the linear function is steeper for lower amounts of training, con-
sequently, our conjecture is that the exponential relationship holds
only for much larger amounts of training data.
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by the messages, and found that the topics ranged from
personal messages to extremely technically oriented mes-
sages. In this sense, the Voicemail database is again dif-
ferent from the Switchboard database where the speakers
were asked to talk about a specified topic {one of 35 top-
ics), and gives a distribution of topics in real-world voice-
mail. We attempted to subjectively characterize the top-
ics into (a) business-related (eg. schedule for a meeting),
(b)personal (eg. ’get back home before 9 pm ... or else’
variety), (¢) work-related (eg. maintenance schedule for a
lab), (d) technical {eg. 'theres yet another bug in this code
..." variety), and (e) miscellaneous (messages not falling in
any of the above categories). Based on a subjective catego-
rization, we found that the percentage of these categories
respectively was 27, 25, 17, 13 and 18 % respectively.
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