Open source morphological analyzer

Németh Lasz16*, Haldcsy Péter* Kornai Andras**, Trén Viktor* * *

Kivonat The HunTools natural language processing toolkit supports
spellchecking, stemming, morphological analysis and generation in a set
of language-neutral routines. The core engine of the LT toolkit is based
on the well-known open-source spellchecker OpenOffice.org MySpell, but
has several additional functionalities. It supports morphological analysis,
also in case of languages with rich morphology and compounding. Both
the Hungarian-specific and the language-neutral parts of the system are
available under open source LGPL license.

Keywords: Morphological analysis, open source, Ispell, Myspell, Uni-
code

1. Introduction

The HunTools natural language processing toolkit emerged from the Sz6Szab-
lya morphological analyzer project at the the Budapest Institute of Technology
Media Education and Research Center|[3,5]. In this paper we concentrate on the
architecture of the MorphBase morphological component which supports spell-
checking, stemming, morphological analysis, and generation in a set of language-
neutral routines. Both the Hungarian-specific and the language-neutral parts of
the system are available under the open source LGPL license.

The core engine of MorphBase is a descendant of the well-known Internatio-
nal Ispell spellchecker, which identifies correctly spelled words by first stripping
affixes according to a rule-system and then looking up the stems from a lexicon.
Our code base comes from the open source OpenOffice.org MySpell, a por-
table and thread-safe C++ library reimplementation of International Ispell.
Both the rule-system and the lexicon are specified as input files and compiled
off-line. Our improved version is similarly language independent (and compatible
with Myspell file formats) but has significant additional functionality.

We have also focused on solving several other morphological and orthograp-
hical problems in a simple matter, for example Morphbase knows and handles
null morphemes, circumfixes, fogemorphemes, homonyms, special compounding
rules, etc. and Unicode encoding.

* Budapesti Mdszaki Egyetem Média Oktat6 és Kutaté Kozpont,
{nemeth,halacsy}@mokk.bme.hu
** MetaCarta Inc., andras@kornai.com
*** International Graduate College, Saarland University and University of Edinburgh,
v.tron@ed.ac.uk

2. Architecture of Huntools

2.1. Language-independent applications

Though the names HunSpell spell checker, HunStem stemmer, HunMorph morp-
hological analyser suggest Hungarian orientation, in the spirit of Ispell, our
project keeps technology and lexical resources perfectly separated (see figure).

The legacy monolithic architecture

Online layer Offline layer
|
1
Language- \
independent hunspell |
applications |
)
+
|
. magyarispell
Language- fes
specific hu HU | Generator scripts
resources aff/dic files 1
I 3
! M4 Affi
] Lexicon X
' macros
1
|
The new modular architecture
Online layer \ Offline layer
Language- | | | | !
hunmorph hunstem hunspell |
independent -) hunlex
— hunbase-lib (API)
applications) s
@
I
€
- - | ———— Open MorphDB
Language- |
specific - -
res%urces aff/dic files aff/dic files aff/dic files : Application
| Lexicon Grammar dependent mgrph
& phono settings
Application dependent :
1

resources

1. 4bra. Architecture of Huntools

As a result, all the modules of our LT toolkit are directly applicable to other
languages provided that lexical resources are available. Since Myspell resources
are available for more than 50 languages, our stemmer and spellchecker can be
readily used for other languages.

2.2. HunLex

The sheer size and redundancy of precompiled morphologies make modifications
very difficult and debugging nearly impossible. Maintaining these resources wit-
hout a principled framework for off-line resource compilation is hopeless, witness

Magyar Ispell,the Hungarian MySpell resource which resorts to a clever (from
a maintainability perspective, way too clever) mix of shell scripts, M4 macros,
and hand-written pieces of MySpell resources.

To remedy this problem we devised an offline resource compilation tool,
Hunlex, which given a central lexical database and a morphological grammar
can create resources for the applications according to a wide range of configu-
rable parameters. HunLex is a language-independent pre-processing framework
for a rule-based description of morphological grammars ([6]).

3. Introduction to Morphbase

Showing examples is the best method to introduce capabilities of Morphbase.
We will describe shortly the format of the resource (affix and dictionary file),
give and explain examples about several new features of our Ispell’s descendant.

3.1. Basic format of Morphbase resource

Morphbase requires two files to define the language that it is analysing. The
first file is a dictionary containing words for the language, and the second is an
"affix" file that defines the meaning of special flags in the dictionary.

A dictionary file (*.dic) contains a list of words, one per line. First line of
the dictionaries (except personal dictionaries) contains the word count. Each
word may optionally be followed by a slash ("/") and one or more flags, which
represents affixes or special attributes. Default flag format is a single (usually
alphabetic) character. In Hunspell dictionary file, there is also an optional morp-
hological field separated by tabulator. Morphological desciptions have custom
format.

An affix file (*.aff) may contain a lot of optional attributes. For example,
SET is used for setting the character encodings of affix and dictionary files.
TRY sets the change characters for suggestions. REP sets a replacement table
for multiple character corrections in suggestion mode. PFX and SFX definies
prefix and suffix classes named with affix flags.

The following affix file example definies UTF-8 character encoding. TRY
suggestions differ from the bad word with an English letter or an apostrophe.
With these REP definitions, Hunspell can suggest the right word form, when
the misspelled word contains f instead of ph and vice versa.

SET UTF-8
TRY esianrtolcdugmphbyfvkwzESIANRTOLCDUGMPHBYFVKWZ’

REP 2
REP f ph
REP ph f

PFX A Y 1

PFX A O re .

SFX BY 2
SFX B 0 ed ["y]
SFX B y ied y

There are two affix classes in the dictionary. Class A definies an ‘re-’ prefix.
Class B definies two -ed’ suffixes. First suffix can be added to a word if the last
character of the word isn’t ‘y’. Second suffix can be added to words terminated
with an ‘y’. (See details later.) The following dictionary file uses these affix
classes.

3

hello
try/B
move/AB

All accepted words with this example: hello, try, tried, move, moved, remove,
removed.

3.2. Options in affix file

Nearly every single option in the affix file corresponds a Morphbase feature. We
can give a shortly abstract about these features by introducing options.

SET encoding Set character encoding of words and morphemes in affix and
dictionary files. Possible values: UTF-8, ISO8859-1-1508859-10, ISO8859-
14, KOI8-R, KOI8-U, microsoft-cp1251, ISCII-DEVANAGARI.

TRY characters Hunspell can suggest right word forms, when those differs
from the bad form by one TRY character. Parameter of TRY is case sensitive.

LANG langcode Set language code. In Hunspell may be language specific co-
des enabled by LANG code. At present there are az_AZ, de_ DE, hu HU,
TR tr specific codes in Hunspell (see program source).

FLAG value Set flag type. Default value is character. The long value sets the
2-character flag type, the num sets the decimal number flag type. Decimal
flags are numbered from 1 to 65535, and separated by comma.

COMPOUNDMIN num Minimum length of words in compound words. De-
fault value is 3 letter.

COMPOUNDFLAG flag Words signed with COMPOUNDFLAG may be in
compound words (except when word shorter than COMPOUNDMIN). Affi-
xes with COMPOUNDFLAG also permits compounding of affixed words.

COMPOUNDBEGIN flag Words signed with COMPOUNDFLAG (or with
a signed affix) may be first elements in compound words.

COMPOUNDLAST flag Words signed with COMPOUNDFLAG (or with a
signed affix) may be last elements in compound words.

COMPOUNDMIDDLE flag Words signed with COMPOUNDFLAG (or
with a signed affix) may be middle elements in compound words.

ONLYINCOMPOUND flag Suffixes signed with ONLYINCOMPOUND
flag may be only in inside of compounds (Fuge-elements in German, fo-
gemorphemes in Swedish).

CIRCUMFIX flag Affixes signed with CIRCUMFIX flag may be on a word
when this word also has a prefix with CIRCUMFIX flag and vice versa.
COMPOUNDFORBIDFLAG flag Suffixes with this flag forbid compoun-

ding of the affixed word.

COMPOUNDROOT flag COMPOUNDROOT flag signs the compounds in
the dictionary (Now it is used only in the Hungarian language specific code).

COMPOUNDWORDMAX number Set maximum word count in a com-
pound word. (Default is unlimited.)

FORBIDDENWORD flag This flag signs forbidden word form. Because af-
fixed forms are also forbidden, we can substract a subset from set of the
accepted affixed and compound words.

PSEUDOROOT flag This flag signs virtual stems in dictionary. Only affixed
forms of these words will be accepted by Hunspell. Except, if dictionary word
has a homonym or a zero affix (null morpheme).

WORDCHARS characters WORDCHARS extends tokenizer of Hunspell
command line interface with additional word character. For example, dot,
dash, n-dash, numbers, percent sign are word character in Hungarian.

LEMMA PRESENT flag Generally, there are dictionary words as lemmas
in output of morphological analysis. Sometimes dictionary words are not
lemmas, but affixed (not real) stems and virtual stems. In this case lem-
mas (real stems) need to put into morphological description, and forbid not
real lemmas in morphological analysis adding LEMMA PRESENT flag to
dictionary words.

COMPOUNDSYLLABLE max_syllable vowels Need for special compo-
unding rules in Hungarian. First parameter is the maximum syllable number,
that may be in a compound, if words in compounds are more than COM-
POUNDWORDMAX. Second parameter is the list of vowels (for calculating
syllables).

SYLLABLENUM flags Need for special compounding rules in Hungarian.

REP number_ of replacement definitions

REP what replacement We can define language-dependent phonetic infor-
mation in the affix file (.aff) by a replacement table. First REP is the header
of this table and one or more REP data line are following it. With this table,
MySpell can suggest the right forms for the typical faults of spelling when
the incorrect form differs by more, than 1 letter from the right form. For
example a possible English replacement table definition to handle misspelt
consonants:

REP 8

REP f ph
REP ph f
REP f gh
REP gh f

REP j dg
REP dg j
REP k ch
REP ch k

Replacement table is also usable in robust morphological analysis (accepting
bad forms) or stricter compound word support in spell checking (forbidding
generated compound words, if they are simple words with typical fault at
the same time).
PFX flag cross product number
PFX flag stripﬁng prefix condition morphological description
SFX flag cross product number N
SFX flag stripping suffix condition morphological description An af-
fix is either a prefix or a suffix attached to root words to make other words.
We can define affix classes with arbitrary number affix rules. Affix classes
signed with affix flags. First line of an affix class definition is the header.
Fields of an affix class header:
1. Option name (PFX or SFX).
2. Flag (name of the affix class).
3. Cross product (permission to combinate prefixes and suffixes). Possible
values: Y (yes) or N (no).
4. Line count of the following rules.
Fields of the affix rules:
1. Option name.
2. Flag.
3. Stripping characters from beginning (at prefix rules) or end (at suffix
rules) of the word.
4. Affix (optionally with flags of continuation classes, separated by a slash).
5. Condition.
6. Custom morphological description.
Zero stripping or affix are indicated by zero. Zero condition is indicated by
dot. Condition is a simplified, regular expression-like pattern, which must be
met before the affix can be applied. (Dot signs arbitrary character. Charac-
ters in braces sign an arbitrary character from the character subset. Dash
hasn’t got special meaning, but circumflex (*) next the first brace sets comp-
lementer character set.)

4. Morphological analysis

Hunmorph’s affix rules has got an optional morphological description field. There
is a similar optional field in dictionary file, separated by tabulator:

word/flags morphology

We defines a simple resource with morphological informations.
Affix file:

SFXXY1
SFX X 0 able . +ABLE

Dictionary file:
drink/X [VERB]
Test file:

drink
drinkable

Test:

$ hunmorph test.aff test.dic test.txt
drink: drink [VERB]
drinkable: drink[VERB]+ABLE

You can see in the example, that the analyzer concatenates the morphological
fields in item and arrangement style.

5. Twofold suffix stripping

Ispell’s original algorithm strips only one suffix. Hunmorph can strip another
one yet.
The twofold suffix stripping is a significant improvement in handling of im-
mense number of suffixes, that characterized the agglutinative languages.
Extending the previous example by adding a second suffix (affix class Y will
be the continuation class of able suffix):

SFX YY1
SFX Y 0 s . +PLUR

SFX XY 1
SFX X 0 able/Y . +ABLE

Dictionary file:
drink/X [VERB]
Test file:

drink
drinkable
drinkables

Test:

$ hunmorph test.aff test.dic test.txt
drink: drink [VERB]

drinkable: drink[VERB]+ABLE
drinkables: drink[VERB]+ABLE+PLUR

Theoretically with the twofold suffix stripping needs only the square root of
the number of suffix rules, compared with a MySpell implementation. In our
practice, we could have elaborated the Hungarian inflectional morphology with
twofold suffix stripping. (Note: In Hunlex preprocessor’s grammar can be use
not only twofold, but multiple suffix slitting.)

6. Extended affix classes

Hunmorph can handle more than 65000 affix classes. There are two new syntax
for giving flags in affix and dictionary files.
FLAG long command sets 2-character flags:

FLAG long
SFX Y1 Y 1
SFX Y1 0 s 1

Dictionary record with the Y1, Z3, F? flags:
foo/Y1Z3F7?
FLAG num command sets numerical flags separated by comma:

FLAG num
SFX 65000 Y 1
SFX 65000 0 s 1

Dictionary example:

f00/65000,12,2756

7. Homonyms

Hunmorph’s dictionary can contain repeating elements that is homonyms:

work/A [VERB]
work/B [NOUN]

An affix file:

SFX A Y 1
SFX A 0 s . +SG3

SFX B Y1
SFX B 0 s . +PLUR

Test file:
works
Test:

> works
work [VERB]+SG3
work [NOUN]+PLUR

This feature also gives a way to forbid illegal prefix/suffix combinations in
difficult cases.

8. Prefix—suffix dependencies

An interesting side-effect of multi-step stripping is that the appropriate treat-
ment of circumfixes now comes for free. For instance, in Hungarian, superlatives
are formed by simultaneous prefixation of leg- and suffixation of -bb to the ad-
jective base. A problem with the one-level architecture is that there is no way
to render lexical licensing of particular prefixes and suffixes interdependent, and
therefore incorrect forms are recognized as valid, i.e. *legvén = leg + vén ‘old’.
Until the introduction of clusters a special treatment of the superlative had to
be hardwired in the earlier HunSpell code. This may have been legitimate for
a single case, but in fact prefix—suffix dependences are ubiquitous in category-
changing derivational patterns (cf. English payable, non-payable but *non-pay
or drinkable, undrinkable but *undrink). In simple words, here, the prefix un- is
legitimate only if the base drink is suffixed with -able. If both these patters are
handled by on-line affix rules and affix rules are checked against the base only,
there is no way to express this dependency and the system will necessarily over-
or undergenerate.

In next example, suffix class R have got a prefix continuation’ class (class P).

PFXP Y 1
PFX P O un . [prefix_un]+

SFXSY1
SFXS 0 s . +PL

SFX QY1

SFX Q 0 s . +3SGV

SFXRY 1

SFX R 0 able/PS . +DER_V_ADJ_ABLE

Dictionary:

2
drink/RQ [verb]
drink/S [noun]

Morphological analysis:

> drink

drink[verb]

drink[noun]

> drinks

drink [verb]+3SGV

drink [noun]+PL

> drinkable

drink[verb]+DER_V_ADJ_ABLE

> drinkables
drink[verb]+DER_V_ADJ_ABLE+PL

> undrinkable
[prefix_un]+drink[verb]+DER_V_ADJ_ABLE
> undrinkables
[prefix_un]+drink[verb]+DER_V_ADJ_ABLE+PL
> undrink

Unknown word.

> undrinks

Unknown word.

9. Circumfix

Conditional affixes implemented by continuation class are not enough for circum-
fixes, because a circumfix is one affix in morphology. We also need CIRCUMFIX
option for correct morphological analysis.

circumfixes: ~ obligate prefix/suffix combinations

superlative in Hungarian: leg- (prefix) AND -bb (suffix)
nagy, nagyobb, legnagyobb, legeslegnagyobb

(great, greater, greatest, most greatest)

CIRCUMFIX X

PFX A Y 1
PFX A 0 leg/X .

PFXBY 1
PFX B 0 legesleg/X .

SFXCY3
SFX C 0 obb . +COMPARATIVE

SFX C 0 obb/AX . +SUPERLATIVE
SFX C 0 obb/BX . +SUPERSUPERLATIVE

Dictionary:

1
nagy/C [MN]

Analysis:

> nagy

nagy [MN]

> nagyobb

nagy [MN]+COMPARATIVE

> legnagyobb

nagy [MN]+SUPERLATIVE

> legeslegnagyobb

nagy [MN]+SUPERSUPERLATIVE

10. Compounds

Allowing free compounding yields decrease in precision of recognition, not to
mention stemming and morphological analysis. Although lexical switches are
introduced to license compounding of bases by Ispell, this proves not to be
restrictive enough. For example:

affix file
COMPOUNDFLAG X

2
foo/X
bar/X

With this resource, foobar and barfoo also are accepted words.

This has been improved upon with the introduction of direction-sensitive
compounding, i.e., lexical features can specify separately whether a base can
occur as leftmost or rightmost constituent in compounds. This, however, is still
insufficient to handle the intricate patterns of compounding, not to mention
idiosyncratic (and language specific) norms of hyphenation.

The MySpell algorithm currently allows any affixed form of words which
are lexically marked as potential members of compounds. Hunspell improved
upon this, and its recursive compound checking rules makes it possible to imp-
lement the intricate spelling conventions of Hungarian compounds. For examp-
le, using COMPOUNDWORDMAX, COMPOUNDSYLLABLE, COMPOUND-
ROOT, SYLLABLENUM options can be set the noteworthy Hungarian ‘6-3’
rule. Further example in Hungarian, derivate suffixes often modify compoun-
ding properties, hence in Hunmorph can be also use the compounding flags on

affixes, and there is also a special flag (COMPOUNDFORBIDFLAG) to prohibit
compounding of the derivations.
We also need several Hunmorph features for handling German compounding;:

German affix file

set language for handling compound words with dash
LANG de_DE

COMPOUNDBEGIN U
COMPOUNDMIDDLE V
COMPOUNDEND W

for German fogemorphemes (Fuge-element)
ONLYINCOMPOUND X

for decapitalizing nouns with fogemorphemes
CIRCUMFIX Y

for handling Fuge-elements with dashes (Arbeits-)
dash will be a special word

COMPOUNDMIN 1

WORDCHARS -

Fuge-element, first position

(without decapitalize) <Arbeitscomputer>
SFEX I Y1

SFX I 0 s/UX .

Fuge-element, middle position

(with decapitalize). <Computerarbeitsplatz>
SFXJ Y1

SFX J 0 s/VYBX .

for forbid exceptions <*Arbeitsnehmer>
FORBIDDENWORD Z

decapitalizing prefix, in middle of compounds
PFX A Y 29
PFX A A a/VX A

PFX A Z z/VX Z
decapitalizing ‘circumfix’, with Fuge-element

PFX B Y 29
PFX B A a/VXY A

PFX B Z z/VXY Z

decapitalizing prefix, in end of compounds
PFX C Y 29
PFX C A a/WX A

PFX C Z z/WX Z
Example dictionary:

4

Arbeit/IJKC
Computer/UAC
-/W
Arbeitsnehmer/Z

Accepted compound compound words with the previous resource:

Computer

Arbeit

Arbeits-

Computerarbeit
Computerarbeits-
Arbeitscomputer
Computerarbeitscomputer
Arbeitscomputerarbeit
Computerarbeits-Computer

Not accepted compoundings:

computer

arbeit

Arbeits

arbeits

ComputerArbeit
ComputerArbeits
Arbeitcomputer
ArbeitsComputer
Computerarbeitcomputer
ComputerArbeitcomputer
ComputerArbeitscomputer
Arbeitscomputerarbeits
Computerarbeits-computer
Arbeitsnehmer

This solution is still not ideal, however, and will be replaced by a pattern-
based compound-checking algorithm which is closely integrated with input buffer

tokenization. Patterns describing compounds come as a separate input resource
that can refer to high-level properties of constituent parts (e.g. the number of
syllables, affix flags, and containment of hyphens). The patterns are matched
against potential segmentations of compounds to assess wellformedness.

11. Character encoding

11.1. Problems with the 8-bit encoding

Both Ispell and Myspell use 8-bit ASCII character encoding, which is a major
deficiency when it comes to scalability. Although a language like Hungarian has a
standard ASCII character set (ISO 8859-2), it fails to allow a full implementation
of Hungarian orthographic conventions. For instance, the -’ symbol (n-dash) is
missing from this character set contrary to the fact that it is not only the official
symbol to delimit paranthetic clauses in the language, but it can be in compound
words as a special ’big’ hyphen.

MySpell has got some 8-bit encoding tables, but there are languages without
standard 8-bit encoding, too. For example, a lot of African languages have non-
latin or extended latin characters.

Similarly, using the original spelling of certain foreign names like Angstrim or
Moliére is encouraged by the Hungarian spelling norm, and, since characters ’A’
and ¢’ are not part of ISO 8859-2, when they combine with inflections containing
characters only in ISO 8859-2 (like elative -bdl, allative -tél or delative -r4l), these
result in words (like Angstrémrél or Moliére-rél.) that can not be encoded using
any single ASCII encoding scheme.

The problems raised in relation to 8-bit ASCII encoding have long been
recognized by proponents of Unicode. Unfortunately, switching to Unicode (e.g.,
UTF-16 encoding) would require a great deal of code optimization and would
have an impact on the efficiency of the algorithm. The Démdlki algorithm [1]
used in checking affixation conditions utilizes 256-byte character arrays, which
would grow to 64k with Unicode encoding. Since online affixation for a richly
agglutinative language can easily have several hundred!, such arrays, switching
to Unicode would incur high resource costs. Nonetheless, it is clear that trading
efficiency for encoding-independence has its advantages when it comes a truely
multi-lingual application, therefore it was among our plans for a long while to
extend the architecture in this direction.

11.2. A hybrid solution

Recently we implemented successfully a memory and time efficient Unicode
handling, with hybrid string manipulation and condition checking.

! In the case of the standard Hungarian resources we use, this number is ca. 300
or more since redundant storage of structurally identical affix patterns improves
efficiency.

Affixes and words are stored in UTF-8, during the analysis are handled in
mostly UTF-8, in condition checking and suggestion are converted to UTF-16.

Domolki-algorithm is used for storing and checking 7-bit ASCII (ISO 646)
condition character, and sorted UTF-16 lists for other Unicode character of
condition patterns.

Conclusion

The core engine of the Huntools toolkit is descendant of the widely adopted In-
ternational Ispell and OpenOffice.org Myspell, but has several additional func-
tionalities.

In a simple manner, we enabled the output of stripped forms, thereby cre-
ating a stemmer. Next, we enabled alternative analyses, both in stemming and
providing a full morphological analysis. Furthermore, we replaced the simple the
simple one-pass affix stripping mechanism of ispell by a recursive system in which
affixes can be stripped in as many layers as needed. This results in considerable
simplification of the lexical resource, as well as increased linguistic transparency
and maintainability. Finally, we implemented new features for handling speci-
al morphological and ortographical problems of different languages, for example
circumfixes and 6-3 compounding rule in Hungarian and fogemorphemes in Ger-
man languages.

In the paper we try to introduce the capability of our morphological analy-
zer by several examples. We also try to assess the merits and limitations of our
tools with special attention to the possibility of applying them to bootstrap-
ping resources in other languages, especially ones with rich morphology, difficult
orthographical rules in compounding or special alphabets.

Acknowledgements

Our project is funded by an ITEM grant from the Hungarian Ministry of Infor-
matics and Telecommunications, and benefits greatly from logistic and infrast-
ructural support of MATAV Rt. and Axelero Internet.

Hivatkozasok

1. B Domdlki. Algorithms for the recognition of properties of sequences of symbols.
USSR Computational & Mathematical Physics, 5(1):101-130, 1967. Pergamon Press,
Oxford.

2. Péter Halacsy, Andras Kornai, Laszl6 Németh, Andras Rung, Istvan Szakadat,
and Viktor Tron. Szogyakorisag és helyesiras-ellendrzés [word frequency and spell-
checker accuracy|. In Proceedings of the 1st Hungarian Computational Linguistics
Conference, pages 211-217. Szegedi Tudoményegyetem, 2003.

3. Péter Halacsy, Andréas Kornai, Laszl6 Németh, Andras Rung, Istvan Szakadat, and
Viktor Trén. Creating open language resources for Hungarian. In Proceedings of
Language Resources and Evaluation Conference (LREC04). European Language Re-
sources Association, 2004.

. Németh Laszl6. Magyar Ispell — Valasz a Helyes-e?-re. In IV. GNU/Linuz szakmai
konferencia, pages 99-107. Linux-felhasznalok Magyarorszagi Egyesiilete, 2002.

. Németh Laszl6. A Szoészablya fejlesztés. In V. GNU/Linuz szakmai konferencia.
Linux-felhasznalok Magyarorszagi Egyesiilete, 2003.

. Tron Viktor. Hunlex - morfologiai szotarkezels rendszer. In IT Magyar Szamitégépes
Nyelvészeti Konferencia, 2004.

