
TTAAPPAADDMM MMAANNUUAALL
PPrreeffaaccee
TTAAPPAADDMM means ‘Three-dimensional Articulographic Position and Align Determination with
MATLAB’. It is a compilation of MMAATTLLAABB-Scripts for basic AAGG550000-data handling, especially for
calculation of sensor positions from measured amplitudes. So far, TTAAPPAADDMM is a mid tier software
component, it does neither cover raw data acquisition and demodulation, nor high level things
like correction of head movements. Still, there are plans to release Phil Hooles scripts for further
processing, but that will be a different library.
Together with the AAGG550000 hardware, several programs for data acquisition and processing are
distributed by CCAARRSSTTEENNSS MMEEDDIIZZIINNEELLEEKKTTRROONNIIKK CCOOMMPPAA NNYY .1 If you are looking for handy and well-
tried evaluation software, which does not requires any programming skills, you should use the
Carstens software.
Please read ‘changelog.txt’ for latest information!

LLeeggaall nnoottiiccee
TTAAPPAADDMM is copyright © 2005 by Andreas Zierdt.2 The AAGG550000-Technologie and the know-how,
especially the position calculation method, are protected by German and US-Patents. As holders
of the AG500-patents, Bahne Carstens and Andreas Zierdt decided to make the TAPAD
functionality available to developers and to put TTAAPPAADDMM under the GNU General Public
License.3
TTAAPPAADDMM was released for scientifically use. It is distributed in the hope that it will be useful for
people who want to write their own EMA analysis software, but comes without any warranty.

SSyysstteemm rreeqquuiirreemmeennttss
TTAAPPAADDMM was developed with MMAATTLLAABB 6.5, it is a port of TTAAPPAADDCCOONN..EEXXEE, which was
written in C++ at the IIPPSSKK in Munich. TTAAPPAADDMM is organized like a MMAATTLLAABB-Toolbox itself and
some features may require other Toolboxes. However, the basic functionality should be available
without any toolboxes. You will find more specific information’s, within the documentation of
the single scripts.
TTAAPPAADDMM was developed under Windows XP Pro, but it should run on any platform you can get
MMAATTLLAABB for. In case you encounter any platform specific problems, please report them to me.

IInnssttaallllaattiioonn
Just extract the Zip-Archive to wherever you like and add this location to your MMAATTLLAABB path.
Do not put the ‘private’ subfolder on your path.
On the MMAATTLLAABB command window, enter ‘helpwin tapad’, to see if the path setting is
correct.

1 http://www.articulograph.de/
2 Email: Anderas.Zierdt@phonetik.uni-muenchen.de
3 See the file gpl.txt for the GNU General Public License

UUssaaggee
The central function of the Toolbox is ‘tapad.m’, with it you will perform the position calculation
task. This is where you’ll want to start, after you’ve read the ‘changelog.txt’. As with all TTAAPPAADDMM
functions you can get an explanation of what the function does by entering ‘helpwin tapad’,
or ‘help tapad’. Since TTAAPPAADDMM is subject to frequent changes, this manual can only cover the
general concept.

The TAPAD Functon
Tapad is the core function of the TAPADM Toolbox, which performs position calculation for a
set of EMA-Recordings (‘trials’), each stored in a individual data file.

tapad(BasePath, AmpPath, ResPath, TrialIdx, ChanIdx, TapadOptions,
StartValues, UserFunction);

 Mandatory Arguments
BasePath is somethig like 'C:\MyStuf\EMA', i.e. the base for all data. To split the path in two
parts complicates handling at first glance, but if you want to compute different versions of data, it
simplifies things. Think of BasePath as name of your recording and than use ResPath to address
different folders like ‘results4levenberg’, ‘results4filtered’, ‘results1stTry’,…
If you use a standardized directory structure, BasePath may also help you to run scripts for
different data sets, or on different computers.

AmpPath and ResPath are defining the relative path for input and output data, e.g. AmpPath =
'Data\Amp'; ResPath = 'Data\Pos';

 TrialIdx defines the trials (files) to be processed. Input data is expected from one directory, with
a 4-digits file pattern, like '0001.mat'. Perform the data pre-processing prior to tapad.m to
generate these input data from the AG500 '.amp' files

 ChanIdx names the channels to be computed, e.g. 1:12. If there is already an existing TAPADM
result file and TAPADM is used to calculate position data just for some channels, the function
will keep existing position data which is not affected by this run. Thus, position calculating can be
performed in a sequential order: channel by channel.

Options
-d use amplitude derivatives to weight errors
-f flip time, i. e. process data onwards from the last point
-h don't use history (i.e. last result) as start point (significantly increases computation time!)
-l use Levenberg-Marquardt instead of Newton method
-r recursive mode, where individual start values for every sample are taken from former
calculated result files. The path to this files is expected as 7th function-argument
-s user supplied initial start value for the first sample in the trial. Start values are expected as a 7 th
function-argument. (see below)
-a automatically starts the position calculation at the best suited sample in the trial and continues
in both directions from that point on. (Disables -r and -f)

Extra Arguments
StartValues is a manifold argument:
In recursive mode (-r), StartValues defines the path where files with individual start positions can
be found. (similar to AmpPath)
StartValues in conjunction with -s defines the start position to be used for first sample in trial
(arranged 5 x channels). Accessed by channel number, not position in ChanIdx list!!!
UserFunction: If supplied, tapad.m will call this function for every trial with the following
arguments:

msg = UserFunction(trial, NumOfTrials, ChanIdx, Result, Residuals,
Iterations)

If the function returns a character string, tapad will display it during the calculation of the next
trial.

Data organization

AAGG550000-Amp and Pos data files
The AAGG550000-Software saves data in a binary format with the extension amp for demodulated signal
amplitudes and pos for computed positions.4 Both formats can be read by ‘loaddata.m’.
TTAAPPAADDMM does not write files in any of these formats, but uses MMAATTLLAABB binary files with the
extension ‘mat’ to store all data.

General (IPSK) data format for Mat-files
To simplify data handling, TAPADM uses a data structure, which is used at the IPSK for several
projects. The main idea is, that each file has one data set and a couple of additional info
structures.
The following code example will illustrate the structure of a data file and give you a hint of data
exploration:

>> clear all
>> load 'D:\Matlab\TAPADM\data\pos\0001.mat'

>> whos
 Name Size Bytes Class

 comment 1x1981 3962 char array
 data 500x7x12 168000 single array

 descriptor 0x0 0 char array

 dimension 1x1 372 struct array
 private 1x1 124 struct array

 samplerate 1x1 8 double array
 unit 0x0 0 char array

4 When we speak of positions, we usually mean both spatial position and orientation (5 coordinates)

The organization of the data here is 500x7x12, i.e. 500 samples with 7 variables (x, y, z, phi, theta,
exitflag, ‘rms-value’) and 12 channels. (It is a result-file.)

A suggestion for directory layout
Let’s assume, we have recorded lots of data during a half-day EMA session, collected from our
subject Bill A. Richards and this is part of the FOO-Project at our place. Let’s further assume, all
EMA data is stored on a Windows-PC on Partition ‘E:’ than a suitable base –path could be
E:\2005\foobar and a directory structure could than look like this:

E:\2005\foobar\calibrationr\channel1…
E:\2005\foobar\calibrationr\channel12
E:\2005\foobar\raw (containing the ‘amp’-files of all trials)
E:\2005\foobar\amps (containing the amplitude mat-files of all trials)
E:\2005\foobar\pos (containing the calculated positions for all trials)
E:\2005\foobar\LevNoStart (alternative positions)
E:\2005\foobar\down8\amps (amplitude files downsampled by factor 8)
E:\2005\foobar\down8\pos (positions for the downsampled data)
E:\2005\foobar\down8\LevNoStart (alternative positions, downsampled data)
E:\2005\foobar

HHooww ttoo……

Prepare new AG500 measurement data
During measurement, the AAGG550000 creates a set of files with the extension ‘amp’. You will have to
convert them into MMAATTLLAABB binary files prior to anything else. Since the original data is not really
altered during the conversation, it is not essential to keep the amp-files. Yet, considering the amp-
files as the ‘experimental observation’, I would recommend backing them up.
You will than use ‘prepdata.m’ to convert the data, as in the following example: 5

>> prepdata('D:\Foo3Data', 'ag500', 'amps', 1, ‘FIR2030’);

Notice that a moderate low-pass filter is applied here during the conversation (assuming the amp-
files are backed up) to eliminate HF-Ripple with a cutoff frequency of 20 Hz. The idea is, that
this will not affect the trajectories of the sensors, but simplifies position calculation.
It is after all, a change and I would suggest, you try both filtered and unfiltered data, to get a
feeling about the effects. When in doubt, do not filter amplitudes, filter position data in the
spatial domain.
A main reason for using ‘prepdata.m’ with filter is downsampling. It gives you the opportunity to
generate an image of your newly acquired data. An image with reduced temporal resolution (e.g.
25 Hz), that will be perfect to probe data procession within reasonable time. If you think you
have found the optimal setting for ‘tapad.m’ and maybe have sorted out some trials, you can start
processing the real data. (A Friday afternoon is good time for that…)
 The following code example shows how to downsample your data to a 25 Hz rate:

>> prepdata('D:\Foo3Data', 'ag500', 'ds\amps', 1, 'FIR0512', 8);

 Even though this Toolbox provides no low-pass filter which allows downsampling by more than
factor 8 (equals a 25 Hz rate), you might decide to reduce the data even more to obtain a fast
glance on the result, but this will inevitably ruin the reliability of your findings with respect to
sensor movements.

5 (We assume ‘D:\Foo3Data\ag500\’ holds ‘0001.amp’, ‘0002.amp’, and so on.)

