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Abstract
This paper presents the acquisition of the Duke Kunshan
University Jinan University Electromagnetic Articulography
(DKU-JNU-EMA) database in terms of aligned acoustics and
articulatory data on Mandarin and Chinese dialects. This
database currently includes data from multiple individuals
in Mandarin and three Chinese dialects, namely Cantonese,
Hakka, Teochew. There are 2-7 native speakers for each lan-
guage or dialect. Acoustic data is obtained by one head-
mounted close talk microphone while articulatory data is ob-
tained by the NDI electromagnetic articulography wave re-
search system. The DKU-JNU-EMA database is now in prepa-
ration for public release to help advance research in areas
of acoustic-to-articulatory inversion, speech production, di-
alect recognition, and experimental phonetics. Along with the
database, we propose an acoustic-to-articulatory inversion base-
line using deep neural networks. Moreover, we show that by
concatenating the dimension reduced phoneme posterior proba-
bility feature with MFCC features at the feature level as tandem
feature, the inversion system performance is enhanced.

Index Terms: deep neural network, electromagnetic articu-
lography, acoustic-to-articulatory inversion, phoneme posterior
probability, tandem feature

1. Introduction
Speech signals, produced by human vocal tract and speech pro-
duction organs, carry various types of information such as lex-
ical contents and paralinguistic characteristics, e.g. language,
speaker, emotion, age, gender, etc. With the progress and re-
finement in articulography [1, 2], three-dimensional (3D) mod-
eling of the human speech production system has become avail-
able. Such technique provides accurately aligned acoustic sig-
nals and articulatory trajectories, which can be useful for re-
search works in a variety of areas, such as speech production
[3], speech recognition [4], speaker recognition [5], emotion
recognition [6], speech synthesis [7, 8], etc.

The articulography speech research system helps capture
the configurations of the articulators, that are, the locations and
the movements of lips, tongue, velum, etc. The speech sig-
nals are also recorded simultaneously. These collected data is
known as the electromagnetic articulography (EMA) data. Sev-
eral well-known free and publicly available corpora for EMA
data are mentioned in [9]. The publicly available EMA cor-
pus MNGU0 [10] contains 1354 utterances from a single na-
tive British English speaker, while another public corpus [11]

is a multi-channel/multi-speaker English database. However,
the resources on Mandarin and Chinese dialects are very lim-
ited. In order to provide more EMA resources on Mandarin and
Chinese dialects, we collected the multi-speaker/multi-dialect
Duke Kunshan University Jinan University Electromagnetic Ar-
ticulography (DKU-JNU-EMA) database, which is under fi-
nal preparation for public release. Furthermore, the database
may potentially promote the acoustic-articulatory researches on
Asian languages since it contains Mandarin and three differ-
ent Chinese dialects, and there are 2-7 native speakers for each
language or dialect. The database was collected in Jinan Uni-
versity, China. Basically, we use the NDI wave research system
to record the movements of the articulators in the midsagittal
plane. The DKU-JNU-EMA database consists of over 3000 ut-
terances in four different kinds of reading materials. The read-
ing materials cover all phonemes in Mandarin, Hakka, Teochew
and Cantonese. We believe that the DKU-JNU-EMA database
can help advance research in areas like speech production [3],
acoustic-to-articulatory inversion [12, 13, 14], dialect recogni-
tion, and experimental phonetics.

Along with the DKU-JNU-EMA database, this paper im-
plements an acoustic-to-articulatory inversion baseline with one
subject’s data from the database. Acoustic-to-articulatory inver-
sion is a technique that determines the articulatory trajectories
from speech signals and has made substantial progress recently
by adopting deep neural network for the inversion [13]. Follow-
ing the methods in [14] , we employ the deep neural networks
(DNN) structure to model and predict the tract variable trajec-
tories. Conventionally, the network input is acoustic features
extracted from speech signals, and output is the synchronized
articulatory coordinates. In this study, motivated by the tandem
feature concept in [10] , we first use a DNN based ASR acous-
tic model, trained on the publicly available HKUST database
[15] , to obtain the phoneme posterior probabilities (PPP). Then
we apply principal component analysis (PCA) on PPP features
for dimension reduction and concatenate with MFCC together
as a kind of tandem features for the subsequent modeling. We
show that the phonetic level information introduced by the PPP
features can enhance the inversion performance.

This paper is organized as follows. In Section 2, we will
describe the details of the DKU-JNU-EMA database. Section 3
presents acoustic-to-articulatory inversion baseline. The exper-
imental results are discussed in Section 4 while conclusions are
provided in Section 5.
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Figure 1: Left: Position of sensors in the DKU-JNU-EMA
database, Right: The EMA recording setup

2. DKU-JNU-EMA database
In this section, we describe the new electromagnetic articu-
lography database containing Mandarin, Cantonese, Hakka and
Teochew languages produced by multiple speakers. The DKU-
JNU-EMA database contains about 10.66 hours of recording.

2.1. Data collection setup

We use the NDI electromagnetic articulography speech research
system to capture the real-time tract variable trajectories, as
shown in the figure 1 and table 1. Subjects were asked to place
six sensors in mouth and one at the bridge of nose as a reference
point. Table 1 shows the locations of six sensors, that are, upper
lip, lower lip, lower incisor, tongue tip, tongue body, and tongue
dorsum [9] . In addition, subjects wear a head-mounted close
talk microphone to record the speech signal simultaneously. We
also used a palate probe to perform the palate tracing. The mor-
phological shapes of hard palate could be useful in speech pro-
duction and speaker recognition.

Table 1: Location of the sensors

Location Label

Upper lip UL
Tongue tip TP
Lower lip LL

Tongue body TB
Lower incisor LI

Tongue dorsum TD
Nose bridge RF

2.2. Database composition

The DKU-JNU-EMA database includes data from Mandarin
and three different Chinese dialects. For each language or di-
alect, subjects were required to record 4 sessions of utterances
as follows:

• Sentence session: subjects read complete sentences or
short texts.

• Consonant session: for each given consonant, subjects
read related words composed by the specific consonant.

• Vowel session: for each given vowel, subjects read re-
lated words composed by the specific vowel.

• Tone session: for each given word, subjects read words
with every tone of that language or dialect.

Each language and dialect has a reference alphabet, and the
phonetically balanced texts and sentences selected for record-
ing. The reading materials can be found in the database. Un-
fortunately, there are no utterances in Consonant session, Vowel
session and Tone session for Mandarin due to the lack of Man-
darin alphabet reading material. Similarly, the lack of phonet-
ically balanced sentences for Hakka and Teochew leads to two
empty Sentence sessions. For each language or dialect, each ut-
terance was recorded once by every subject. However, several
unqualified recordings were disregarded.

As shown in table 2 , The Mandarin database contains 7
subjects (4 male, 3 female), and up to 2100 utterances in the
Sentence session. Cantonese database has 5 subjects (2 male,
3 female), 113 Sentence utterances, 55 Tone utterances, 119
Consonant utterances, 361 Vowel utterances. Hakka database
has 2 male subjects, recording 12 Tone utterances, 34 Conso-
nant utterances and 146 Vowel utterances. Teochew database
has 1 male subject and 1 female subject recorded 20 Tone ut-
terances, 46 Consonant utterances and 195 Vowel utterances.
In addition, each subject has recorded hard palate trace shapes
multiple times.

Table 2: The data composition of the DKU-JNU-EMA database

Mandarin Cantonese Hakka Teochew

male:female 4:3 2:3 2:0 1:1
sentences 2100 113 \ \

tone \ 55 12 20
consonant \ 119 34 46

vowel \ 361 146 195
palate trace 68 41 18 18

Each recorded utterance has both articulatory and acoustic
data. The acoustic signal is recorded by a head-mounted MEMS
microphone at 22kHz sample rate. In the articulatory domain,
NDI EMA speech research system captures 5D data of each
sensor with a sample frequency of 100 Hz. The 5D data is com-
posed of quaternion rotation parameters and X, Y, Z coordinates
in the reference three dimensional space.

3. Acoustic-to-articulatory inversion
methods

In this section, we introduce our deep neural network and tan-
dem feature based acoustic-to-articulatory inversion deep neu-
ral network baseline.

3.1. Data pre-processing

Each speech utterance is downsampled from 22kHz to 16kHz.
Then we apply an energy based voice active detection (VAD)
module to remove the silence parts in the audio. However, to
preserve phoneme contexts, we keep 50ms silence before and
after each speech segment.

The raw EMA data of seven sensors, one for reference,
provides six individual measurements in 5D layout. Typically,
the lips and tongue have little movements in the Z axis(left
and right). We select the X and Y coordinates (back/front and
up/down respectively) in the midsagittal plane for further anal-
ysis. Consequently, 12 dimensional coordinate vector is derived
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from 6 sensors. We then, normalize the 12 dimensional coordi-
nate vector by subtracting the corresponding global mean from
each dimension, and then dividing by each dimension’s global
standard deviation. Like other electromagnetic articulograph
speech research system [16], there are mis-tracking points in
the collected EMA data due to some anomalies in our device’s
performance. Typically, the mis-tracking points show as NAN
in the EMA data. However, the average mis-tracking rate is
0.85%, which is low. Hence we can simply use the interpolated
values for the missing point.

3.2. Mel Frequency Cepstral Coefficient(MFCC)

This study uses MFCC as the basic acoustic feature in our
acoustic-to-articulatory inversion system. First, we extract 13
dimensional (13D) MFCC features for each utterance, with cep-
stral mean subtraction and variance normalization. Since the
tract variable trajectories are continues, context information is
beneficial for the inversion system. Therefore, a second order
delta features are appended to the 13D MFCC features to obtain
the 39 dimensional MFCC features [17].

3.3. Tandem acoustic feature

Here we propose to employ tandem feature [7] in our DNN
acoustic-to-articulatory inversion system. Figure 2 shows the
main procedure in generating tandem features. In speech recog-
nition, MFCC features from the entire context window are fed
into a DNN acoustic model to generate the phoneme posterior
probabilities (PPP). Actually, the PPP is a vector of probabili-
ties, each element on each senone triphone tied state. In auto-
matic speech recognition, conventionally, the PPP would go di-
rectly to an Hidden Markov Model(HMM) decoder to find the
word sequence, but instead, we use them as the phonetic fea-
tures. We believe this phonetic level feature could potentially
enhance the inversion system performance since it provides ad-
ditional information from the phonetic point of view.

Figure 2: The procedure of extracting tandem feature

The dimension of the PPP feature vector is the same as
the size of the output layer in the speech recognition acoustic
model, which is 6500 in our experiments. Since the dimension-
ality of PPP is too high for the acoustic-to-articulatory inver-
sion system, principal component analysis (PCA) is applied on
PPP. Then the dimension reduced PPP is concatenated with the
MFCC features together as a kind of tandem feature. We believe

the tandem feature including both the acoustic and phonetic
characteristic is able to improve the inversion performance.

In this paper, the Mandarin acoustic model for generating
PPP is trained from the HKUST database(1). HKUST Mandarin
Telephone Transcript Data contains 200 hours of Mandarin Chi-
nese conversational telephone speech from Mandarin speakers
in mainland China.

3.4. Deep neural networks (DNN) setup

The proposed system adopts a 4 layers DNN setup, with 300
nodes for each layer. We use RELU as the activation function
and Adam optimizer [18] for stochastic optimization.

RMSE =

√
1

N

∑
i

(ei − ti)
2

(1)

Root mean-squared error (RMSE) is widely used for measuring
the performance of acoustic-to-articulatory inversion systems.
Hence, we also use it as the loss function in the training proce-
dure. RMSE is defined as equation 1 , where ei is the predicted
tract variable and ti is the groundtruth tract variable.

4. Experimental results
We choose one subset named LY from the Mandarin database
to demonstrate the system performance. We use the first 260
utterances for training, and the remaining 40 utterances for test-
ing. 10ms frame shift is adopted in extracting MFCC features
which matches with the 100Hz sample rate of the EMA system.
In this way, we are able to align the tandem features with the
articulatory trajectories.

We employ an Mandarin acoustic model learnt from the
HKUST database to derive the phoneme posterior probabil-
ity(PPP) vector. Then PCA is applied to the PPP features to
reduce its dimensionality to 40. In this work, we compares three
different features listed below for acoustic-to-articulatory inver-
sion.

• MFCC with a context window of 11 frames

• line spectral frequency (LSF) [19] with a context win-
dow of 11 frames

• Tandem feature with a context window of 11 frames.
Since the PPP already has contexts information, the con-
catenate feature consist of 5 frames of MFCC before cur-
rent frame, tandem feature (current frame), and 5 frames
of MFCC after.

As shown in the following equation, we also use the average
correlation to evaluate the system performance.

r =
1

N

∑
i

corrcoef (ei, ti) (2)

N denotes the dimensionality of the EMA groundtruth data,
which is 12 in this paper. ei is the predict trace of dimension i
and ti is the actual measured trace.

In order to make sure it’s not accidental that the tandem
feature system outperforms MFCC and LSF, the DNN inver-
sion system is trained and tested 10 times with random initial
parameters for each kind of input features. The results on dif-
ferent features are shown in the table 3.

1https://catalog.ldc.upenn.edu/LDC2005S15
https://catalog.ldc.upenn.edu/LDC2005T32
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Figure 3: Predicted and groundtruth trajectories of the proposed inversion system on LL, TP and TD sensors.

Table 3: RMSE and correlation with three different features

Feature r RMSE
MEAN MAX MIN

MFCC 0.78551 0.54698 0.5522 0.5404

LSF 0.78435 0.548024 0.5559 0.54464

Tandem 0.79518 0.53441 0.5386 0.5301

From table 3, we can observe that tandem feature outper-
forms MFCC and LSF in terms of both RMSE and average
correlation. Hence, the introduction of phonetic level tandem
feature enhances the inversion performance.

Figure 3 shows the predicted and groundtruth trajectories
of 3 articulators (lower lip, tongue tip, lower incisor). The pre-
dicted tract variable trajectories are well aligned with the real
measured ones in our acoustic-to-articulatory inversion system.

5. Conclusions
This paper presents a new Electromagnetic Articulography
database called DKU-JNU-EMA. Different from the existing
publicly available EMA database [9, 2, 20] , the proposed DKU-
JNU-EMA database focus on Mandarin and three widely used
Chinese dialects, each has data from multiple speakers. Releas-
ing DKU-JNU-EMA database as a public and free resource to
the community could potentially benefit the research works in
related areas.

We also provide an acoustic-to-articulatory inversion sys-
tem baseline with 300 utterances from a single speaker in the
DKU-JNU-EMA database. Experimental results show that by
concatenating the phonetic level PPP feature with the acoustic

level MFCC feature together as the inputs, the inversion system
performance is enhanced in every experiment. However, the
numerical differences are small among three different inversion
systems. It is likely that the limited training data restricts the
performance of tandem feature system.
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