
The DARPA Machine Reading Program - Encouraging Linguistic and

Reasoning Research with a Series of Reading Tasks
†

Stephanie Strassel
1
, Dan Adams

2
, Henry Goldberg

3
, Jonathan Herr

3
, Ron Keesing

3
,

Daniel Oblinger
4
, Heather Simpson

1
, Robert Schrag

5
, Jonathan Wright

1

(1) Linguistic Data Consortium, (2) Scitor Corporation, (3) SAIC, (4) DARPA, (5) Global InfoTek, Inc.

Corresponding author: strassel@ldc.upenn.edu

Abstract

The goal of DARPA’s Machine Reading (MR) program is nothing less than making the world’s natural language corpora available for

formal processing. Most text processing research has focused on locating mission-relevant text (information retrieval) and on tech-

niques for enriching text by transforming it to other forms of text (translation, summarization) – always for use by humans. In contrast,

MR will make knowledge contained in text available in forms that machines can use for automated processing. This will be done with

little human intervention. Machines will learn to read from a few examples and they will read to learn what they need in order to an-

swer questions or perform some reasoning task. Three independent Reading Teams are building universal text engines which will cap-

ture knowledge from naturally occurring text and transform it into the formal representations used by Artificial Intelligence. An

Evaluation Team is selecting and annotating text corpora with task domain concepts, creating model reasoning systems with which the

reading systems will interact, and establishing question-answer sets and evaluation protocols to measure progress toward this goal. We

describe development of the MR evaluation framework, including test protocols, linguistic resources and technical infrastructure.

1. Background and Conceptual Framework

To advance research towards the end goal of general,
lightly-trained systems which read text “in the wild” well
enough to support automated reasoning tasks as well as to
learn to read better, three independent Reading Teams are
building universal text engines which will capture knowl-
edge from naturally occurring text and transform it into
the formal representations used by Artificial Intelligence.
An Evaluation Team is selecting and annotating text cor-
pora with task domain concepts, creating model reasoning
systems with which the reading systems will interact, and
establishing question-answer sets and evaluation protocols
to measure progress toward this goal. While the Reading
teams will be implementing a full range of natural lan-
guage processing (NLP) techniques, significant emphases
in the research will be in areas of machine learning and
knowledge representation. Aligning a reading system’s
internal linguistic representation of a text corpus with the
semantics of an external reasoning system – in fact, learn-
ing that alignment “on the fly” during reading – is a major
challenge for the program. This paper describes develop-
ment of the MR evaluation framework, including test pro-
tocols, linguistic resources and technical infrastructure.

The MR program is structured around a roadmap of lin-
guistic and semantic capabilities, e.g. dealing with anaph-
ora, causal and modal language, temporal and spatial
reasoning, sentiment and belief. Over the course of the
five-year program, the Evaluation Team will provide a
series of graded Reading Tasks (described below), which
present the reading systems with increasingly difficult
challenges. At each phase, increasingly complex linguistic
and reasoning tasks are combined with increased perform-
ance expectations in query answering, expanded corpus
volume, and reduced time to prepare and adapt the sys-
tems to new tasks.

2. Readability Task

The program begins with an interesting but somewhat
orthogonal challenge: assessing the “readability” or qual-
ity of a text passage. This is motivated by the belief that a
computer system with the ability to extract a set of lan-
guage features diverse enough and of high enough quality
to assess readability at least as well as humans will be
primed to take on the challenges of machine reading.

Measures of readability have been proposed and are in
common use by educators and editors to estimate grade
level or comprehension. These measures are usually based
on surface features, such as sentence length or syllable
count (Flesch, 1948; Kincaid, et.al., 1975), although some
incorporate deeper concepts, such as word or sentence
“complexity” (Gunning, 1952). However, recent research
(Pitler & Nenkova, 2008) has shown that surface features
are not well correlated with judgments by adult readers,
whereas several syntactic, semantic, and discourse fea-
tures are.

Reflecting the goal of the MR program, we define read-
ability as a subjective judgment of how easily a reader
can extract the information the writer or speaker intended
to convey. We draw texts from a diverse range of genres
which a machine reading system is likely to employ:
newswire stories, weblogs, newsgroups/forum posts, Wi-
kipedia entries, broadcast transcripts and closed caption
text, and even some machine translation output.

To separate the rating of texts from the measurement of
human performance, we employ two panels. A panel of
judges with expertise in reading tasks such machine trans-
lation post-editing produces a gold standard judgment – a
rating from 1 to 5 for each passage – and their mean de-
fines a reference rating for that passage. A separate, “nov-
ice” panel of typical readers of English then rates the
passages, to estimate the variable performance of humans

986

at this task. Machine performance is expected to meet or
exceed the performance of individual novice readers with
statistical significance.

2.1 Data and Human Judgments

Genre and passage selection and human test protocols are
designed to ensure minimal bias from such factors as fa-
tigue, topic familiarity, genre-specific surface features,
and inter-passage ranking interference. Individual reading
passages are selected by first preparing a large pool of
candidate documents for each genre. Candidates are
manually vetted to exclude inappropriate passages (e.g.
not in English); the pool is then automatically downsam-
pled to produce the targeted number of passages for each
genre. Selected passages are processed to standardize
formatting and remove any genre-specific surface features
like newswire headlines or Wikipedia-style markup. Pas-
sages are also assigned to a general topic category (current
events, sports, etc.) prior to assessment.

The prepared passages are then assigned to expert and
naive judges for assessment via a web-based user inter-
face. To reduce assessor fatigue, passages are grouped into
sets of 10, called rounds. For each round, assessors first
read each passage and give a rating of 1-5 "stars" to indi-
cate how readable the passage is. After rating all passages
in a round, assessors then provide a rank ordering of those
passages in terms of their overall readability. Following
each round expert judges are also asked to state the crite-
ria they used to determine the passage ratings/rankings.
This is an open list, not a set of pre-supplied criteria. As-
sessors continue rating, ranking and (experts-only) listing
criteria for each round until all passages have been judged.
All passages are assessed by multiple independent naive
and expert judges. Presentation order within and across
rounds is randomized, and each round is roughly balanced
for genre and topic. A similar balance is maintained be-
tween training and testing data sets.

2.2 Evaluation, Metrics, and Results

To reduce the chance that extraneous factors might domi-
nate the test, such as variability in the expert ratings or
bias from the experts’ experience with previous linguistic
annotation tasks, we devised several scoring metrics with
different statistical characteristics to compare machine to
(novice) human judgments.

Metric 1 – Score Difference. This metric measures how
much closer than the average novice the machine comes
to the gold standard rating. We use the mean of the expert
panel ratings as the reference score s(g,t) for text t. Let
s(j,t) be the score of the j

th
 novice judge. Then

∑
=

−=∆
N

j

tjstgsabs
N

thumans
1

)),(),((
1

),(

is the mean delta over all novice judges on text t, and the
machine delta is)),(),((),(tmstgsabstm −=∆ .

()∑
=

∆−∆=∆
k

t

tmthumans
k

mhumans
1

),(),(
1

),(

is the mean difference between the machine and the aver-
age novice estimate of the gold standard for each text.

Metric 2 – Proportional Target. To account for variation

in the expert judgments, we define a target for each pas-

sage as the range of expert ratings, ei, and award a score

inversely proportional to target width. The metric is sim-

ply ∑ =

k

t
tmhit

k 1
),(

1

where e(i,t) is the judgment of expert i on text t;
and hit(m,t) = 1/(1+max(e(i,t))-min(e(i,t)))

 Metric 3 – Correlation Coefficient. The claim of the
readability evaluation is that machine ratings of texts are
closer to expert ratings than are novice ratings. A particu-
larly simple and robust way to test this claim is to ask
whether the correlation between machine scores and ex-
pert scores is higher than you would expect if the machine
is no different than a novice.

We use the expert panel mean to define the gold standard
expert rating and compute, as our test statistic, the Pearson
correlation coefficient of this value and the machine score
for all passages in the set:

ME

Mt

k

t

Et

ME k

me
EM

ME
σσ

µµ

σσ
ρ

)1(

)()(
)cov(

),(1

−

−−

==
∑

=

where E={et | t=1…k} are the gold standard, and M={mt |

t=1…k} are the machine scores.

Evaluation. To verify that the machine’s performance is
significantly better than novices’, we derive a sampling
distribution under the null hypothesis that machines and
novice humans perform identically by repeatedly choos-
ing a random novice score for the machine’s score. We
typically generate 10,000 iterations to ensure stability of
the sampling distribution parameters. In each metric, the
upper critical value (2.5% tail) is used to demonstrate
95% confidence.

Results. Preliminary results on both cross validated and
blind test passages by three separate reading systems are
very promising. Table 1 shows p-values (the estimated
likelihood that metric statistics as good as the machines’
would be produced by novices).

The Reading teams have reported using a broad mix of
features, from “traditional” readability features like sen-
tence length, to deeper, more reading-relevant features
like parse complexity, verb features, and number of ex-
tracted assertions. They confirm Pitler & Nenkova’s (2008)
finding that surface features are not sufficient by them-
selves to succeed at this task.

3. Reading Tasks

The fundamental challenge for reading systems is to ex-
tract knowledge from natural language texts into formal
statements in a focused ontology to support a performance
task in a particular domain (a reading task domain). The
Machine Reading program defines a crisp boundary be-
tween a reading system and a domain-specific reasoning
system (DSRS) that captures task-specific background

p-value System A System B System C

Metric 1 0.0002 0.0002 0.0001

Metric 2 0.0002 0.0002 0.0001

Metric 3 0.0002 0.0132 0.0001

Table 1: Preliminary results of Readability test

987

knowledge that either:
• Would not usually be found in the target texts; or
• Would be considered out of scope for machine read-

ing during a given (e.g., early) evaluation period.

A reading system can invoke the DSRS to determine:
• Whether a given set of formal statements is internally

consistent; and
• What other, output formal statements follow logically

and/or probabilistically from a given set of input
statements.

The reading system can exploit this information to help
resolve linguistic ambiguities and textual contexts. Simply
parsing all texts into a single, large, undifferentiated set of
statements and then making all possible inferences would
likely yield hopelessly inconsistent and useless results,
and the DSRS thus helps the reading system meet the key
challenge of determining which statements should be used
together in distinct contexts.

Reading tasks are motivated by real-world tasks that can
productively exploit the results of reading and inference.
The program plans to take on two new task domains in
each program year. Within a particular task domain (e.g.,
international political analysis, equipment maintenance,
medical diagnosis), we devise a series of use cases reflect-
ing a progression of complexity or sophistication in natu-
ral language understanding and in formal knowledge
representation.

A concrete example will serve to illustrate the reading task
framework. In an early Phase 1 reading domain, NFL
Scoring, the task is to read news articles about National
Football League games and answer queries about final
scores, scoring events, and periods played. This domain
was selected considering the motivating performance task,
“Dynamically infer and display status information regard-
ing a sports competition from a play-by-play account,”
and the notional application, “For the sports junkie, a set-
top plug-in reads the closed captioning stream and main-
tains more comprehensive status than the mini-scoreboard
overlay typically used in broadcast video, such as a sum-
mary of the game’s scoring events.”

Note that this task engenders inference: Suppose the an-
nouncer says, “The kick is good, and it’s 6 to 3,” and sup-
pose the only earlier score extracted was “Atlanta Falcons
3, New York Jets 0.” A domain-specific reasoning system
(DSRS) can infer that the “kick” must have been a field
goal, not a point after touchdown; it may need more in-
formation (e.g., a future score) to determine which team is
ahead at this point. For simplicity early in the program,
we have adjusted this performance task so that we can
work with news stories rather than play-by-play tran-
scripts: Given any score in an NFL game and any partial
information about the contributing scoring events, the
DSRS will return the most likely scoring event combina-
tions and their probabilities. Ultimately, we target reading
systems capable of exploiting such probabilistic informa-
tion from DSRS results during the reading process (e.g.,
to determine the most likely grouping of extracted formal
statements into consistent contexts).

3.1 Reading Task Resources

Associated with each reading task, the evaluation team
prepares a package of linguistic and knowledge represen-
tation and reasoning resources, including the following.
• A text corpus for reading system training and a simi-

lar one (revealed only during an official evaluation
period) for testing. For NFL Scoring, we have an ini-
tial training corpus of some 100 news stories.

• A syntax specification expressing the expected formal
outputs of machine reading and expected formal in-
puts to the DSRS. In principle, this specification
could require any formalism; in initial practice, the
evaluation team provides an RDF/OWL ontology
(RDF, 1994; OWL, 2004) specifying classes and
properties (entity types and relations) and associated
semantic constraints (e.g., type and cardinality
restrctions on properties). An excerpt of the NFL
Scoring ontology appears in Table 2. Note that be-
sides elements (e.g., NFLGame, gameDate) that are
designated as direct targets of machine reading, the
ontology includes properties (e.g., touchdownCom-
pleteCount) that the DSRS will either accommodate
as input or infer and built-in properties that can ap-
pear only in queries or the bodies of rules.

• Annotated examples of reading target formal state-
ments manually identified in the training corpus.

• Annotation guidelines that provide expectations both
for corpus annotators and for reading teams and that
set forth ground rules to cover anticipated borderline
cases.

• A set of task-relevant formal queries that a reading
system (supported by the DSRS) must answer. The
evaluation team provides an initial set of queries with
the training corpus. The ontology serves as a fair-
game basis for additional or alternative queries during
testing.

• Formal answers to the sample queries. These answers
constitute the gold standard for the reading task (not
to be confused with that for the readability task de-
scribed in Section 2).

• A DSRS.

Class (Superclass…)

property (Type) cardinality

NFLGame (Event)

gameDate (Date) # ≤ 1

numberOfPeriods (Count) # ≤ 1

hasOvertimePlay (Boolean) # ≤ 1

gameWinner (NFLTeam) # ≤ 1

gameLoser (NFLTeam) # ≤ 1

homeTeamInGame (NFLTeam) # ≤ 1

awayTeamInGame (NFLTeam) # ≤ 1

teamInGame (NFLTeam) # ≤ 2

teamFinalScoreInGame (TeamSum-

maryScore)

≤ 2

TeamSummaryScore ()

teamScoringAll (NFLTeam) # = 1

pointsScored (Count) # = 1

touchdownCompleteCount (Count) # ≤ 1

onePointConversionComplete-
Count

(Count) # ≤ 1

twoPointConversionComplete-

Count

(Count) # ≤ 1

fieldGoalCompleteCount (Count) # ≤ 1

safetyCompleteCount (Count) # ≤ 1

Table 2: NFL Scoring Ontology Excerpt

988

Table 3 illustrates inter-relationships among queries,
DSRS inference rules, and input RDF statements ex-
tracted by reading systems or humans, using an example
from the NFL Scoring reading task. Note that individual
RDF statements are notated as subject-predicate-object
triples and RDF graphs (collections of RDF statements) as
parenthesized lists.

A query is an RDF graph containing variables
(e.g., ?G, ?N); an answer is an instantiation of the query
that binds values to the its variables in a way that is con-
sistent with domain theory embodied in the DSRS’ rules
and with the input statements extracted from the text cor-
pus.

In this example, DSRS Inference Rule 1 provides the (de-
fault) assumption that overtime results in five periods of
play. In fact, a post-season NFL play-off may have multi-
ple overtime periods (if the score remains tied). Instead of
a purely logical default, we could also have exercised
probabilistic reasoning here and returned an answer with a
probability less than 1.0. Either way, the reading system
will learn a likely number of periods, making up for the
fact that most stories do not comment on any lack of over-
time play (which is exceptional) or name the number of
the final period, even when overtime happens (as second
overtimes are quite rare). DSRS Inference Rule 2 states
that NFL games are limited to four periods before any
overtime period. This rule does not fire given our example
input, which is consistent with the domain theory.

Note that the evaluation team employs the DSRS in its
process of generating sample answers to the training que-
ries for the training corpus. We feed the input statement
graph resulting from the formal annotation of a given
news story into the DSRS. The DSRS will detect any do-

main theory contradictions in this process, which the an-
notation team can then repair to improve the annotated
corpus. The DSRS thus serves in gold standard answer
development and in annotation quality assurance, as well
as in reading system support.

The DSRS’ quality assurance of annotations is facilitated
by its tracking and perspicuously (for human users) dis-
playing two kinds of provenance (or warrant), for state-
ments that either are input to or are derived by its
inference process. Input statements are supported by text-
based provenance that associate specific text excerpts
with a statement and its subject, predicate, and object.
Text-based provenance is created by the annotation tool
(see Section 3.2.2) when annotators link formal statements
and their parts to segments of a document’s text via the
GUI. Text-based provenances themselves are expressed
using RDF/XML statements; the evaluation team reviews
these via a stylesheet-enabled HTML browser view to
validate annotations’ usage of the reading task ontology.
DSRS-derived statements are supported by rule-based
provenance that link applied rules’ specific consequents
(instantiated “then” parts) with their associated specific
antecedents (instantiated “if” and “if-not” parts), where
each antecedent is instantiated by matching it to a DSRS-
input or earlier-inferred statement. Users thus may trace
back through connected rule-based provenances to trav-
erse the derivation tree supporting any inferred statement.
Rule-based provenances also are expressed as RDF/XML;
their review is supported by a similar stylesheet-enabled
browser view. By reviewing rule-based provenances for
any contradiction rules (e.g., Inference Rule 2 in Table 3)
that fire during gold standard answer generation, the eval-
uation team can determine what semantic issues require
our attention and correction. Reading systems can simi-
larly (presumably, automatically) employ rule-based
provenance to debug any DSRS-detected inconsistencies
in their inference input graphs.

To help address the extremely challenging rapid prototyp-
ing-and-production development issues that we face in
providing resources to facilitate the coupled advance of
both linguistic and knowledge representation technologies
(discussed further in Section 3.2.2), we are exploring a
tighter integration of our underlying tools (i.e., the DSRS
and the annotation tool’s RDF generation capability) and
their user interfaces to expedite the delivery of quality
assurance feedback to both knowledge representation and
annotation specialists on the evaluation team.

3.2 Annotated Corpora

3.2.1. Approach
Source text is selected for each use case to provide con-
tent-appropriate material for training and testing. In early
phases the training and test corpora are small -- on the
order of 100 documents -- but will grow exponentially
over the program phases, reaching web scale in Phase 5.
Some use cases may also include a large background cor-
pus to support unsupervised statistical learning methods.

There are three annotation components for each Reading
Task. The first is a syntax mapping, consisting of natu-
rally-occurring text examples of the formal assertions con-

Query Graph“How many periods were played in each game men-

tioned?”

((?G type NFLGame)

 (?G numberOfPeriods ?N))

Inference Rule 1 “If overtime is mentioned but no period count,

assume 5.”

(:if (?g hasOvertimePlay true)

 :if-not (?g numberOfPeriods ?n)

 :then (?g numberOfPeriods 5))

Inference Rule 2 “A statement of overtime play contradicts one of ≤

4 periods.”

 (:if (?game numberOfPeriods ?N)

 (?N mrq:lessThanOrEqualTo 4)

 (?game hasOvertimePlay true)

 :then (?inputGraph contradicts NFLScoringTheory))

Input Statement Graph (Statements extracted by reading or by

annotation.)

((Game-1 type NFLGame)

 (Game-1 hasOvertimePlay true))

Answer Graph “Five periods played.” (Inferred by invoking the

DSRS with statements extracted from text.)

((Game-1 type NFLGame)

 (Game-1 numberOfPeriods 5))

Table 3: Elements of the NFL Scoring reading task. A
reading system calls the DSRS, providing query and
input statement graphs. The DSRS exercises its in-
ference rules and returns one or more answer graphs.

989

tained in the syntax specification. The syntax specification
and syntax mapping together form a set of example pairs
linking formal assertions to sentences or phrases with the
same meaning as those assertions. The second annotation
component is the set of answers to Reading Task domain
training queries extracted from naturally occurring text;
the third component is the set of answers to test queries.

Manual annotation strategies also vary with each use case.
While some use cases require limited, incomplete and/or
query-driven annotation, in the case of NFL Scoring near-
complete annotation of the corpus was used to simultane-
ously extract syntax mapping examples and training query
answers. Annotators read each document and labeled all
ontological categories occurring in the text. The full anno-
tation approach was well-suited to this initial use case for
several reasons: the relatively small corpus size permitted
a streamlined annotation workflow with limited human
effort; it did not rely on user-driven search to find answers,
which could have led to gaps in annotation coverage; and,
since queries did not need to be defined prior to annota-
tion, it allowed the final selection of training queries to be
driven by answers actually occurring in the text.

While complete annotation for training data was appropri-
ate for NFL Scoring, query-driven annotation is needed in
other cases. Reading System evaluation is based on com-
parisons to human performance, so for test queries the
human annotation workflow must closely parallel the ma-
chine task. Formally specified queries submitted to Read-
ing Systems will be re-formulated as natural language
questions for human readers. Both humans and Reading
Systems will generate query answers that include text
provenance from the data source. Humans may produce
multiple overlapping response assertions; the combined
set of answers will be manually adjudicated to determine
which answers are correct, and which if any are out-of-

scope for that phase. The correct, in-scope adjudicated
human responses become the gold standard answer set for
that query.

3.2.2. Annotation Infrastructure
Creating annotated corpora for the Reading Tasks presents
a number of technical challenges, foremost among them
the alignment between natural text and ontological catego-
ries. An ontology representing the semantics of some do-
main has its own requirements and characteristics
divorced from the natural language expression of those
semantics. Good design demands that an ontology be
modular, unambiguous, and consistent in its representa-
tions; natural language is often none of these things. Con-
sider the so-called NFLGame entity, part of the NFL
Scoring use case. A typical NFL news report involves a
number of entities and events mentioned in the context of
one or more particular games, but the report may lack any
explicit mention (naming) of the games in question, be-
cause the typical human reader implicitly understands that
mentions of teams winning, losing or scoring points occur
in the context of a particular game event. The ontological
representation of these sub-game scoring events ties them
together, through an intermediate object called NFLGam-
eTeamSummaryScore, to a game object, called NFLGame.
If text provenance can be found for NFLGame, it is di-
rectly mapped to that object, but the ontological object is
created regardless of its text instantiation (or lack thereof).
The intermediate NFLGameTeamSummaryScore object
does not map directly to text at all, so is never given text
provenance. Therefore, while ontological and linguistic
expressions can and do come together in many places, it
was recognized early on that direct, transparent mapping
of ontological categories to naturally occurring text was
not an appropriate task for human annotation due to the
general mismatch of surface versus formal representation.

Figure 1: Screenshot of Annotation GUI, Configured for NFLScoring Use Case

990

To address this issue and make annotation a practical task
for humans, the formal assertions of the ontology must be
recast into annotation categories that more closely capture
the patterns found naturally occurring text. A careful map-
ping between ontology and annotation categories must
take place for each new use case. During annotation, the
human does not interact directly with the formal ontology,
but utilizes only the annotation categories, mediated by a
customized annotation GUI and annotation guidelines.
The annotation backend therefore must maintain a direct
mapping between labeled instances of these categories in
the corpus and the output of formally specified ontologi-
cal assertions.

Creating an accurate and complete mapping between the
annotation categories and the formal ontology is challeng-
ing, particularly in an environment of multiple, independ-
ent, and ever-evolving use cases. This frequently changing
landscape requires more than rapid prototyping of soft-
ware, but also rapid deployment of final products (i.e.
annotated corpora and the tools required to create them).
Annotation GUI functionality may need to be extended
quickly to address new requirements, while annotation
categories and labeling guidelines are still evolving to
reflect the latest ontology. Moreover, with the goal of pro-
gressively more difficult reading tasks over the life of the
program, human annotation requirements are also ex-
pected to become more challenging and complex over
time, which requires a robust and extensible annotation
infrastructure.

The solution to these technical challenges is the develop-
ment of a single, but highly customizable, annotation
toolkit, as illustrated in Figure 1. The functionality and
primary code base of the tool increases in stability with
each cycle, because the inherent variability of the use
cases is externalized to a configuration file. Both the an-
notation categories and the subsequently produced onto-
logical categories are defined in the configuration file, in a
domain specific language.

1
 The annotation tool interprets

the configuration file to determine how to lay out the wid-
gets in the GUI; the file also specifies how annotation
output should be structured. In essence, the code that nec-
essarily changes from use case to use case is represented
in a separate file and in a highly simplified and con-
strained form that minimizes development time for new
use cases. These substantial technical challenges have
been hidden from the annotator by reformulating the an-
notation task from the base requirements.

3.3 Evaluation Protocol and Metrics

The core performance task for MR is answering queries
posed by an automated reasoning system, so performance
evaluation is focused on determining the correctness and
completeness of query answers found by Reading Systems.
An additional goal of Machine Reading, beyond accuracy,
is generality; in later phases of the program, time and ef-
fort required to prepare for “blind” use cases or entire
domains will be measured as well.

1 "Domain" here does not refer to the reading task, and in fact

the domain specific language does not change from one use case

to another.

The set of correct answers for a given query – the gold
standard answer set – is determined collaboratively based
on answers found by humans and machines and adjudi-
cated by experts, as in the TREC and TAC programs.
Each phase of the program includes specific goals for
reading and reasoning capabilities that are considered “in
bounds”, and only answers that can be found within the
range of phase-specific capabilities are included within
the gold standard for that phase.

Since the goal of the Machine Reading program is to ap-
proach human performance, the primary query answering
metric is the ratio of machine to human F measures (the –
possibly weighted – harmonic mean of precision and re-
call) over the gold standard answer set.

The Machine Reading program distinguishes between the
ability to find answers that are stated explicitly in text –
facts – and the ability to find answers that require infer-
ence. Separate F-measure performance ratios are com-
puted for answers stated directly in text (PRF) and those
requiring inference (PRI).

This distinction between fact and inference – along with
the development of a consensus answer set – raises a se-
ries of interesting challenges. For example, how do we
arrive at an adequate set of queries and gold standard an-
swers which are consistent with the ontology and based on
consistent human annotation? As mentioned above, que-
ries are merely incomplete assertions consistent with the
task ontology. We are able to generate the full set of pos-
sible queries from the ontology, so depending upon the
size of that set, all or a portion of these queries are auto-
matically applied to the annotations. The human annota-
tions – also consistent with the ontology, as described in
Section 3.2.2 – provide an initial set of gold standard an-
swers to queries involving the classes and relations they
involve. So, in the example we’ve been using, the relation
numberOfPeriods is annotated in several texts. Specific,
annotated games and numbers which fit the query tem-
plate are available as a sub-set of all answers to the que-
ries. The remaining answers come from two additional
processes. First we take the directly annotated assertions
and run them through the DSRS rules. This would pro-
duce, for example, an inferred answer of 5 periods for a
game where a mention of overtime was annotated. This
answer is added to the gold standard set. Then, during
testing, all answers provided by reading systems are re-
tained by the evaluation framework. These may include
correct answers which should be included in the gold stan-
dard. We have designed an adjudication process where
annotators can quickly view the machine-provided an-
swers along with their provenance (portions of the text
where the answer was read, or where precursor facts were
read from which the answer was inferred).

Reading systems, indeed all readers, perform inference at
many levels, from resolving co-reference to applying
common sense reasoning or learning about the domain
through reading the corpus. To make the notion of ex-
tracting explicitly stated facts versus inferred assertions
more precise, we instruct annotators to extract explicit
statements of the targeted assertions. We classify these as
“explicit” and the assertions derived from applying the
DSRS rules over these are “inferred”. When additional

991

assertions are found by reading systems, the same distinc-
tion is made by the adjudicator – is the assertion explicitly
stated in the piece of text which the reading system re-
turns as provenance, or are more than one, disjoint pieces
required to support the assertion? In the former case, the
answer is scored as a fact and included within the gold
standard for fact-based answers, while in the latter it is
scored as an inference.

Another challenge for evaluation is scoring when com-
plete enumerations of all entities are not available. In the
simple domain of NFL Football, we have fully annotated
the corpus and thus enumerated all teams and games, but
it is clearly impossible in broader domains, such as news
about political protests, attacks, or other emerging events
to perform a similar enumeration. We have designed the
machine-test platform interface to include specification of
an “equivalence” class for each entity returned by a ma-
chine reader. These classes (sets of referenced strings) are
matched against the gold standard, allowing for partial
credit as well as adjudication and improvement of the gold
standard.

3.4 Infrastructure

One of the goals of the machine reading program is to
provide a platform around which a community of machine
reading experts can grow. In order to facilitate that future
we chose a design for the platform and system architec-
ture which relied upon open standards that would make
the transition from DARPA program to community project
as seamless as possible. Open standards and a SOA design
also mean that reacting to inevitable change can be

achieved with only minor impacts to users. A second, and
more immediate goal for the platform is that it provide a
means for the program participants to get early access to
the evaluation phase interfaces, file formats and data types.
In order to ensure the platform is available at all times and
will run in a variety of environments we created a version
of the platform which provides all evaluation phase inter-
faces and a subset of the functionality as a set of Java™

web services. Providing all evaluation phase interfaces
early in the life of the program provides us with time to
receive and incorporate feedback. Most importantly, it
also gives the program participants time to become com-
fortable with the evaluation platform by running their own
dry-run tests as early and as often as is useful to them.

As illustrated in Figure 2, the platform supports three pri-
mary use cases which we’ll discuss. These include reading
task generation, reading task consumption, and query an-
swering facilities.

A reading system can make use of the reading task gen-
eration functionality to create complete reading tasks
similar to those which will be used at evaluation time, or
to create reading task sub-sets which focus on specific
areas of interest. Once generated, a reading task is avail-
able for consumption by the reading system.

During a formal evaluation reading task generation will be
performed by the evaluation team to ensure they have
control over the contents. Therefore, a reading system will
be given the identifier of the reading task they are being
evaluated on so that it can be retrieved using the reading
task retrieval interface. This interface simply streams the
reading task RDF graph to the reading system via either a
SOAP or a REST protocol web service.

Prior to a formal evaluation a reading system will want to
gauge its progress on the upcoming task. To facilitate this
need the platform provides an automatic scoring system
which compares reading system answers to a set of gold
standard answers compiled by annotators for the set of
queries in the reading task. The automatic scoring process
is imperfect because the human judge’s which are used
during an evaluation are not present to verify that answers
are absolutely correct. However it does provide a baseline
from which progress can be measured. During scoring,
detailed logs are kept of answers provided by each reading
system. These are gathered by the evaluation team peri-
odically for review. Answers found by the reading systems
which are deemed to be valid but missing from the gold
standard are added. In this way, over time, the gold stan-
dard for a reading task becomes increasingly complete.

4. Conclusion

While the first year’s metrics will not involve specific task
performance goals, the program is based on a series of
increasingly challenging Q/A tasks.

The Evaluation team will produce over 30 use cases in at
least 10 task domains over the life of the program. We
believe this series of graded, diverse reading tasks, com-
prising well annotated texts paired with model reasoning
systems, interface knowledge in machine-accessible form,
and gold-standard Q/A pairs tied to significant reading
tasks, will be a significant resource for NLP researchers
far beyond the program itself.

An important goal of the program is to encourage research
beneficial to machine reading by making these materials
available to the research community at large. The re-
sources described within this paper will be made available
to the broader research community over time. Many re-

Figure 2: Architecture of the Machine Reading Evaluation

992

sources will be distributed to LDC members and non-
member licensees through the usual methods, including
publication in LDC’s catalog, while other resources will
be freely distributed without licensing constraints.

5. References

Flesch, R. (1948). A new readability yardstick, Journal of
Applied Psychology, Vol. 32, pp. 221–233.

Gunning, R. (1952). The technique of clear writing;
McGraw-Hill International Book Co; New York, NY.

Kincaid, J. P.; Fishburne, R. P., Jr.; Rogers, R. L.; and
Chissom, B. S (1975). Derivation of new readability
formulas (Automated Readability Index, Fog Count and
Flesch Reading Ease Formula) for Navy enlisted per-
sonnel, Research Branch Report 8-75, Millington, TN:
Naval Technical Training, U. S. Naval Air Station,
Memphis, TN.

OWL - Web Ontology Language Overview (2004). World
Wide Web Consortium, http://www.w3.org/TR/owl-
features.

Pitler, E. and Nenkova, A. (2008). Revisiting Readability:
A Unified Framework for Predicting Text Quality. Pro-
ceedings of EMNLP.

Proceedings of the First Text Analysis Conference (TAC
2008), Gaithersburg, MD, Nov. 2008. National Institute
of Standards and Technology.

RDF - Semantic Web Standards (1994). World Wide Web
Consortium, http://www.w3.org/RDF.

Voorhees, E. M. (2005). TREC: Experiment and Evalua-
tion in Information Retrieval. MIT Press.

†
 The views, opinions, and/or findings contained in this

article/presentation are those of the author/presenter and
should not be interpreted as representing the official views
or policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the Department of
Defense.

Approved for Public Release, Distribution Unlimited.

993

