External Tools Not Only for ArabTEpX Documents

Karel Mokry
Department of Probability and
Mathematical Statistics
Faculty of Mathematics and Physics
Charles University in Prague
karel@ucw.cz

Abstract

The tools presented in this paper have been de-
signed to facilitate dealing with Arabic docu-
ments which are supposed to be processed by
ArabTgX, or the ones which take advantage of
the ArabTEX ASCII transliteration encoding.

We will explain the exceptional role this en-
coding plays among other standards, and pro-
vide a series of non-trivial conversion scripts.

Following exclusively some formal rules of
Arabic morphology and orthography, one can be
successful enough to eliminate certain typing er-
rors, and prevent misuse of notation. We there-
fore created ArabSpell as a first-aid spelling
checker for vocalized literary Arabic, and have
developed it into a general and independent
rule-driven spelling system.

For educational purposes, Arabic script might
feature color distinction between the on-the-line
string and its vocalization marks. Since no op-
tion of such kind is available in the current ver-
sion of ArabTEX, we would also like to inform of
the acolor. sty package which meets the above
requirement.

1 ArabTgX Encoding Concept

As described elsewhere in detail (Lagally, 1999),
the typesetting system of ArabTEX defines its
own Arabic script transliteration which covers
both contemporary and historical orthography
in an excellent way. Moreover, the notation is
human-readable, and thus suited for use wher-
ever the original were too difficult to render.
Unlike other transliteration concepts based
on one-to-one mapping of graphemes, ArabTEX
evaluates the context of each ASCII character
to generate the corresponding representation in
the Arabic script. The input sequence <igra’
h_a_dA an-na.s.sa bi-intibAhiN> will pro-

Otakar Smrz
Institute of Formal and
Applied Linguistics
Faculty of Mathematics and Physics
Charles University in Prague
smrz@ufal .mff.cuni.cz

duce g\:."yb uim RVS \jj iqgra®> hada ’n-nassa
bi- 'ntibahin implying one should “read this text
carefully”.

Observation can be made that the input is
quite close to its phonetic transcription, yet ex-
tra features are introduced to enable unique
derivation of the resulting equivalent in the Ara-
bic script. Forms of the letters (initial, medial,
final, isolated) and use of ligatures (combina-
tions of graphemes), definite article assimila-
tion, hamza carrier and silent *alif get deter-
mined algorithmically. Note how vowels includ-
ing auxiliary ones are dealt with, and see that
no distinction is made in the input.

As a token of flexibility, ArabTEX notation is
interpretable with several options. The rewrite
rules are subject to the language (Arabic, Per-
sian, Urdu etc.) and the degree of vocalization
(\fullvocalize set in our example). However,
it is to stress that these only control the quality
of the output, while no restriction is imposed on
the input. The notation does not prescribe any
syntax rules or forbidden character sequences.
If we mixed the characters in our example up
arbitrarily, ArabTEX would consider it equally
correct.

2 ArabCode Conversion Package

The complex ArabTgEX transliteration cannot
be efficiently used in systems working with the
original Arabic script in real-time. Therein, the
more natural approach of representing individ-
ual graphemes is taken. The encoding stan-
dards in question include Unicode or UTF, Win-
dows CP 1256, ISO 8859-6, ASMO 449, Buck-
walter Transliteration or even others.

The system of ArabTEX has been equipped
with alternate input reading modules, so that
re-coding documents to the ArabTEX notation

proper be not a prerequisite to system’s appli-
cability. Nonetheless, the problem of conversion
has stayed unsolved.

ArabCode package of conversion scripts pro-
vides the missing foot-bridge between the two
transliteration concepts, and links the separate
encodings with each other. ArabCode has been
implemented in Perl and PHP in order to enable
platform independent processing of Arabic, es-
pecially within Web applications.

2.1 ArabTgX versus UTF

Unfortunately, the ArabTEX notation interpre-
tation algorithm has not been documented by
its author. Built-in in overall code, it cannot be
used as is but for typesetting in ArabTgX.

Therefore, the way ArabCode works can only
simulate the expected behavior. Results of both
systems tally for true Arabic input, still, iden-
tical output is not guaranteed for somehow cor-
rupted or extraordinary data. Improvement of
the method in view of extensibility, fidelity and
elegance is in progress.

Unicode Transformation Format (UTF) has
been chosen as the target encoding because it
covers the nuances of the Arabic script most
completely. Consecutive conversions may be ap-
plied. The inverse process is a simpler task, yet
similar limitations hold.

Optional reduction of diacritics to pre-defined
levels is supported by ArabCode, which is rather
useful in the upward direction.

2.2 Unicode, Windows, Buckwalter etc.

The descriptive scope of UTF is equivalent to
that of Unicode, but there is a practical aspect
speaking for the transformation. Unlike Uni-
code, UTF does not require the lower ASCII
characters to be mapped to two bytes, making
documents in lower ASCII inherently compati-
ble with it.

The encodings of Windows CP 1256, ISO
8859-6 and ASMO 449 are not as rich in
graphemes as needed indeed. Surprisingly, dag-
ger >alif or wasla are absent, not to mention
historical writing.

Buckwalter transliteration maps contempo-
rary Arabic to lower ASCII without such loss
of information.

ArabCode offers more or less trivial conver-
sion scripts for all of these standards.

3 ArabSp&ll Rule-Driven Spelling
System

ArabSpell and its spelling algorithms were orig-
inally devised for checking the entries of an aris-
ing human-edited lexical database, and that is
why ArabSpell does not call for vocabulary at
all. Its power rests in verification of some for-
mal rules of Arabic morphology and in respect
of the ArabTEX notation.

In contrast with previous versions, flexibility
of the system and the programming techniques
in use has been enhanced considerably. Ex-
tended finite-state networks have been utilized
as to resolve the input data. Definition of the
language in question as well as the very response
of the spelling system are fully under user’s con-
trol. The respective information is comprised in
an external grammar, for which convenient syn-
tax has been designed.

Here, the novel concept of ArabSpell shall be
outlined in a nutshell.

3.1 RLG and NFA as system’s core

We suppose that the theory of grammars and
automata is generally understood. Reference to
Rozenberg and Salomaa (1997), Chytil (1984)
or essential university courses may be given.

Right linear grammar (RLG) denotes the reg-
ular grammar rules of which conform to either
of the patterns

source :<>: <word of terminals>target
source :<>: <word of terminals>

where source and target represent one non-
terminal symbol each, :<>: being the operator
of derivation. Unescaped angle brackets delimit
a word of terminal symbols, not excluding an
empty word (which may be omitted before a
nonterminal). We have just applied the nota-
tion of ArabSpell.

Nondeterministic finite automaton (NFA)
with incidental empty-word transitions is an ab-
stract engine to which RLG can be transformed
most easily, requiring the automaton to accept
exactly the same language as the grammar gen-
erates. It is to assign each nonterminal a sin-
gle state, and create one more state as the final
one. The initial symbol of the grammar shall
become the initial state of the engine. In ac-
cordance with the rules, relevant states must be
linked, the missing nonterminal mapping to the

Nonterm Generative Rules ##############H##HHH##HHEHEEH#H R

syllable [c] [V] [C+empty]lsyllable

[C] [V] [C+empty] [C] [ending]

:< "Unruly input!" >: # iterate deriving

stop it now

Cluster Definition Rules #############HRHFHHHBERHERHBHFHFHHBRERFHFHBHB AR REIHHHHH1H

[C] <> 7> <t> <_t> <7g> <.h> <_h> <d> <_d> <r> <z> <8> <"s> <.s8> <.d>
<.t> <.z> <D <.g> <f> <g> <k> <1> <m> <n> <h> <w> <y>

[VI :<>: <a> <i> <u> <A> <I> <U> :<>: <_a> :< "Dagger ’alif occurred." >:
<aa> :< "Deprecated ... use <A> instead!" >:
<iy> :< "Deprecated ... use <I> instead!" >:
<uw> :< "Deprecated ... use <U> instead!" >:

[ending] :< "Invalid ending?" >: <ulN> <iN> <aN> <aNY> <Y> :<>: <aNA> <UA>

<aW> <aWA> :< "Silent ’alif enforced." >:

[empty] :<>: <> # see [C+empty] above

Figure 1: Example of ArabSpell grammar syntax. The generated language fits the structure of
literary Arabic syllable. Simple error messages can be reported even upon acceptance of the input.

final state. Auxiliary states are generated and
transitions between them marked sequentially
by the terminal symbols of the word of the par-
ticular rule.

It is advisable to remove any empty-word
edges, carefully of course. Then, computation
with the NFA gets easier and more efficient.

Limitations on the format of RLG rules are
very strict. However, we may alleviate the in-
convenience of only one right-hand-side nonter-
minal per rule by introducing clusters of liter-
als, which we define as sets of interchangeable
words of terminals. Clusters will behave very
much like nonterminals in the grammar, yet
they shall not be associated with any partic-
ular states when it comes to their compilation
into the automaton. Else, language equivalence
would be violated.

Thanks to the idea of clusters, eminent opti-
mization of the number of nodes and edges in
the NFA network is achieved.

For the purpose of spell-checking, the system
need be supplemented with an appropriate re-
port mechanism. Not only will the engine tell
which input tokens do, or do not, belong to the
language of the grammar. If so, token derivation
will be tracked rule by rule and measures taken
for correct but suspicious input. Milestones in

the history of states might give some clues to
the errors otherwise.

In fact, the implementation of the reporting
scheme enables ArabSpell to operate even far
beyond the class of regular languages.

3.2 Grammar of Arabic syllable

Let us examine two phonetical principles which
affect Arabic morphology, namely that syllables
of literary Arabic start with one and only one
consonant, and that they do not end with more
than one consonant.

Formalization of this structure will help us
reveal some cases of letter omission or insertion
anywhere in the word stem, which is crucial.
Further in our approximation, reserved ortho-
graphical sequences will be allowed to pass as
word endings.

Figure 1 shows such a model. Only the initial
nonterminal is utilized here while taking great
advantage of [clusters of literals]. Ele-
ments of a cluster are specified by predefined
sets on which operators of union + and differ-
ence - can be applied.

Blank lines or semicolons separate individual
rules from each other, # marks comments. The
right-hand-sides of the rules gather into groups
unless delimited by the operator of derivation,

\coldia{red}\fullvocalize\accentshigh
\nocolshadda\colother{blue}\vocalize

\nocolall\colhamza{green}\vocalize

\nocolall\colbeginning{blue}\novocalize Al e 9

\nocolall\colshadda{white}\novocalize

\colisolated{red}\vocalize\accentslow

\
°
\
°
\
™

AT B 5 @ gl W qun R AP
AT GG § gl W C\:’m R AT

u@»@rggﬁ\umé\éﬁs
AT Bl 5 LE gras WUV OB SU A

Figure 2: Example of acolor. sty effects combined with ArabTEX vocalization control. The input

text itself has not been modified.

whose multi-functionality seems, with the re-
porting scheme in mind, intuitive. Still, it de-
serves an extra treatment since...

3.3 Spelling :< Perl subroutines >:

... are what provides the extension beyond reg-
ularity.

As indicated above, derivational operators do
not label states and groups of rules with mere
string constants, but they declare and refer to
Perl subroutines which get executed upon re-
quest. Their return value, if there is any, then
reports as expected.

Imagine that the number of syllables in a
word is our new criterion of correctness. Writ-
ing a regular grammar would be very tedious,
inflexible and inefficient. Once we attach

:< $myToken{"syllables"}++; return >:

to the nonterm generative rules of Figure 1,
syllables will count silently (this subroutine
returns an empty list of values). When com-
pleted, the evaluation code

:< if ($myToken{"syllables"}>5)
{ "Quite many syllables." } >:

for which the grammar syntax reserves a place,
will alternatively confirm our concern.

Various relations within or among tokens of a
document can be supervised like this. Bracket
matching, word repetition or sentence length
are the evergreen problemms.

In Arabic, definite and indefinite article (or
some other ending) could easily get into conflict
as they are affixed at distinct positions in the
word. The rules of the grammar will become

clearer if some memory of the definite article
(going first) is kept throughout the derivation,
and invoked if the offending morpheme crops
up. The respective code reads

:< $myToken{"definite"}=1; return >:

:< if (exists($myToken{"definite"}))
{ "Conflict of morphemes!" } >:

These have only been elementary examples.
Reserved variables can be utilized to supply dif-
ferent language versions of the messages, or to
interact with the inner code of ArabSpell. In de-
terministic grammars, subroutines might serve
for data parsing.

3.4 More language models

ArabSpell is distributed freely with an elabo-
rate grammar of vocalized literary Arabic in
ArabTgX notation. Phenomena as formal fem-
inine ending, definite article assimilation, pres-
ence or absence of initial hamza, consistence of
prefixed particles and endings etc. have been
analyzed in detail.

Several model grammars are also at hand,
and do not confine themselves to Arabic. Feed-
back from linguists is encouraged and welcome.

4 Arabic Script in Color

Arabic does usually not indicate short vowels
and other diacritics in writing, yet vocalization
is necessary to ensure proper interpretation.
That is why diacritical marks are typeset
in color in primers or textbooks of this lan-
guage. No information is missing, while through
a transparent foil of that color, vocalization
turns invisible in order for the reader to train.

The acolor.sty package for ArabTEX and
ITEX offers comfortable control over coloring.
There are some pre-defined sets of symbols you
may apply the color to, but types can be han-
dled separately as well.

Activate ArabTEX and load the package
with \usepackage [option]{acolor}, the op-
tion telling which set of commands to redefine.
Afterwards, \coloption{color} will do the color
change. To cancel coloring, use \nocoloption.

Consult the manual for technicalities. We be-
lieve that Figure 2 shall provide enough insight.

Acknowledgement

Arabic script displays in this paper were typeset
using the ArabTEX package for TEX and IATEX
by Prof. Dr. Klaus Lagally of the University of
Stuttgart. Existence of this system has inspired
our work principally.

References
ALECSO, editor. 1988, Aula¥T G5l daadi

(Essential Arabic Lezicon). Larousse, Tunis.
In Arabic.

Michal Chytil. 1984. Automaty a gramatiky
(Automata and Grammars). SNTL, Prague.
In Czech.

Jifi Fleissig and Charif Bahbouh. 1992. Zdklady
moderni spisovné arabstiny, 1. dil (Essentials
of Modern Standard Arabic, Book I). Dar Ibn
Rushd, Prague. In Czech.

Jifi Fleissig and Charif Bahbouh. 1995. Zdklady
moderni spisovné arabstiny, II. dil (Essentials
of Modern Standard Arabic, Book II). Dar
Ibn Rushd, Prague. In Czech.

Jeffrey E. F. Friedl. 1997. Mastering Regu-
lar Fxpressions. O’Reilly & Associates, Inc.,
Cambridge Farnham Paris Tokyo etc.

al-Majani, editor. 1996. Arabic-English and
English-Arabic Pocket Dictionary. Dar al-
-Majani, Beirut.

Klaus Lagally. 1999. ArabTgX: a System for
Typesetting Arabic, User Manual Version
3.09. Technical Report 1998/09, Institut fur
Informatik, Universitat Stuttgart.

Grzegorz Rozenberg and Arto Salomaa, editors.
1997. Handbook of Formal Languages, vol-
ume 1 Word, Language, Grammar. Springer-
-Verlag, Berlin Heidelberg New York etc.

Sriram Srinivasan. 1997. Adwvanced Perl Pro-
gramming. O’Reilly & Associates, Inc., Cam-
bridge Farnham Paris Tokyo etc.

Distribution Comment

The tools presented in this paper are freely
available at http://www.ucw.cz/"karel/ and
http://ckl.mff.cuni.cz/smrz/.

