
Leveraging the open source ispell codebase for minority language analysis

Lászĺo Németh∗, Viktor Tr ón†, Péter Halácsy∗, Andr ás Kornai‡, Andr ás Rung∗, István Szakad́at∗

∗Budapest Institute of Technology Media Research and Education Center
{nemeth,halacsy,rung,szakadat }@mokk.bme.hu

†International Graduate College, Saarland University and University of Edinburgh,v.tron@ed.ac.uk
‡MetaCarta Inc.,andras@kornai.com

Abstract
The ispell family of spellcheckers is perhaps the single most widely ported and deployed open-source language tool. Here we describe
how theSźoSzablya‘WordSword’ project leveragesispell ’s Hungarian descendant,HunSpell , to create a whole set of related tools
that tackle a wide range of low-level NLP-related tasks such as character set normalization, language detection, spellchecking, stemming,
and morphological analysis.

1. Introduction
Over the years, open source unix distributions have

become the definitive repositories of tried and tested al-
gorithms. In the area of natural language processing,
wellformedness of words is typically checked by the
ispell family of spellcheckers that goes back to Gorin’s
spell program (see Peterson 1980), a spellchecker for
English written in PDP-10 assembly. Since at the core
of spellchecking is a method for accurate word recogni-
tion, it is an ideal platform both for reaching “down” to-
ward language identification and for reaching “up” toward
stemming and morphological analysis. TheSźoSzablya
‘WordSword’ project at the Budapest Institute of Technol-
ogy leverages theispell methods with the goal to ex-
tend them to a general toolkit applicable to various low-
level NLP-related problems other than spell-checking such
as language detection, character set normalization, stem-
ming, and morphological analysis.1

The algorithms described here go back to the roots
of the spell -- ispell -- International
Ispell -- MySpell -- HunSpell development.
The linguistic theory implicit in much of the work has
an even deeper historical lineage, going back at least to
the Bloomfield–Bloch–Harris development of structuralist
morphology via Antal’s (1961) work on Hungarian.
Despite our indebtedness to these traditions, this paper
does not attempt to faithfully trace the twists and turns of
the actual history of ideas, rather it offers only a rational
reconstruction of the underlying logic.

A high performance spellchecker can easily be lever-
aged for language identification, and we have relied heav-
ily on HunSpell both for this purpose and for overall
quality improvement in creating a gigaword Hungarian cor-
pus (see the main conference paper paper Halácsy et al
2004). Orthographic form and, by implication, spellcheck-
ing technology, remains the Archimedean point of natu-
ral language text processing both “downward” and “up-
ward”. Here we will concentrate entirely on the “upward”
developments leading toHunStem, a full featured indus-
trial strength stemmer that supports large-scale Information
Retrieval applications, and eventually toHunMorph , an

1Aversano et al 2002 is the only related attempt we know of.

open source morphological analyzer.2 Though the names
HunSpell andHunStem suggest Hungarian orientation,
in the spirit of ispell our project keeps the technology
perfectly separated from lexical resources, making the tools
are directly applicable to other languages provided that lex-
ical databases are available. Resources for the applications
can be compiled from a single lexical database and mor-
phological grammar with the help of theHunLex resource
compilation tool.

The paper is structured as follows. Section 2 pro-
vides a brief introduction to the morphological analy-
sis/generation problem from the perspective of spellcheck-
ing, and discusses how the affix-flag mechanism introduced
to ispell by Ackerman in 19783 has been modified to
deal with multi-step affix stripping to attack the problem of
languages with rich morphology. Section 3 describes how,
by enabling multiple analyses, treatment of homonyms, and
flexible output of stem information, the general framework
of HunSpell has been extended to support stemming. In
the concluding Section 4 we describe how the codebase can
be leveraged even further, to support detailed morphologi-
cal analysis.

2. The morphological OOV problem
The simplest spellchecker, both conceptually and in

terms of optimal runtime performance, is a list of all cor-
rectly spelled words. Acceleration and error correction
techniques based on hashes, tries, and finite automata have
been extensively studied, and the implementor can choose
from a variety of open source versions of these techniques.
Therefore the spellchecking problem could be reduced, at
least conceptually, to the problem of listing the correct
words, whereby errors of the spellchecker are reduced to
out of vocabulary (OOV) errors. A certain amount of OOV
error is inevitable: new words are coined all the time, and
the supply of exotic technical terms and proper names is in-
exhaustible. But as a practical matter, developers encounter

2For further upward developments such as named entity ex-
traction, parsing, or semantic analysis, orthography gradually
loses its grip over the problem domain, but none of these higher-
level developments are feasible without tackling the low-level is-
sues first.

3For the history ofispell/MySpell , see the man pages.



OOV errors early on from another source: morphologically
complex words such as compounds and affixed forms.

The ability to reverse compounding and affixation has a
very direct payoff in terms of reducing memory footprint,
and it is no surprise that affix stripping ability was built
into ispell early on. Initially, (i)spell only used
heuristics for affix stripping before looking up hypothe-
sized stems in a base dictionary. This was substantially im-
proved by the introduction ofswitches(in linguistic terms
these would be calledprivative lexical features) that license
particular affix rules and thus help eliminate spurious hits
resulting from the unreliable heuristic method.

In 1988 Geoff Kuenning extended affix flags to license
sets of affix rules. In this table-driven approach, affix flags
are interpreted as lexical features that indicate morphologi-
cal subparadigm membership. This method of affix com-
pression allowed for less redundant storage and efficient
run-time checking of a great number of affixes, thereby
enablingispell to tackle languages with more complex
morphological systems than English. After major modifica-
tions of the code, the first multi-lingual version ofispell
was released in 1988.

Ispell can also handle compounds and there is even
the possibility of specifying lexical restrictions on com-
pounding, also implemented as switches in the base dic-
tionary. For some languages, a rich set of compound con-
structions allow for productive extensions of the base vo-
cabulary, and this feature is indispensable in mitigating the
OOV problem. Language-specific word-lists and affix rules
for ispell , with added switch information as necessary,
have been compiled for over 50 languages so far. Our devel-
opment started with providing open source spell-checking
for Hungarian. Our spellchecker,HunSpell is based on
MySpell , a portable and thread-safe C++ library reimple-
mentation ofispell written by Kevin Hendricks. We
choseMySpell as the core engine for our development
both because of its implementational virtues, and because
the non-restrictive BSD license significantly enhances its
potential in open source development and large-scale code
reuse.4

The lexical resources ofMySpell (the affix file and
the dictionary file) are processed at runtime, which makes
them directly portable across various platforms. A line in
the affix file represents an affix rule from a generation point
of view. It specifies a regexp-like pattern which is matched
against the beginning or end of the base for prefix and suf-
fix respectively, a string to strip from, and the actual affix
string to append to the input base. A special indexing tech-
nique, the D̈omölki algorithm is used in checking affixation
conditions (D̈omölki 1967) to pick applicable affix rules in
parsing. A pseudo-stem is hypothesized by reverse appli-
cation of the affix rule (i.e., stripping the append string and
appending the strip string) which is looked up in the dictio-
nary. A line in the dictionary file represents a lexical entry,
i.e., a base form associated with a set of affix flags. If the
hypothesized base is found in the dictionary after the appli-
cation of an affix rule, in the last step it is checked whether

4MySpell has been incorporated into OpenOffice.org’s office
suite, where it replaces the third-party libraries licensed earlier.

its flags contain the one the affix rule is assigned to.
Though the ispell algorithm performs affix stripping and

lexical lookup very efficiently, the implementation does not
scale well to languages with rich morphology.ispell
lexical resources actually exist for some languages with
famously rich productive morphology such as Estonian,
Finnish, and Hungarian, but it is suggestive that the latter
two languages use enhancements overMySpell in their
native OpenOffice.org releases for spellchecking.5 The
Hungarian version uses our development, theHunSpell
library which incorporates various spell-checking features
specifically needed to correctly handle Hungarian orthog-
raphy – we turn to these now.

So far we spoke of affixes only in the sense of edge-
aligned substrings (prefixes and suffixes), but in languages
with complicated combinatorial morphology affix rules
might stand for intricate clusters of affix morphemes (the
sense of affix used in linguistics). Such morphotactic com-
plexity, a hallmark of rich productive morphology, often
makes it difficult to list all legitimate affix combinations,
let alone produce them automatically: the sheer size and
redundancy of precompiled morphologies make modifica-
tions very difficult and debugging nearly impossible. Main-
taining these resources without a principled framework for
off-line resource compilation is virtually a hopeless enter-
prise, witnessmagyarispell , the HungarianMySpell
resource6 which resorts to a clever (from a maintainabil-
ity perspective, way too clever) mix of shell scripts, m4
macros, and hand-written pieces ofMySpell resources.

To remedy this problem we devised an off-line resource
compilation tool which given a central lexical database and
a morphological grammar can create resources for the ap-
plications according to a wide range of configurable param-
eters. HunLex is a language-independent pre-processing
framework for a rule-based description of morphology (de-
tails about grammar specifications and configuration op-
tions ofHunLex would go beyond this paper).

To handle all the productive inflections
magyarispell requires about 20 thousand com-
bined entries. Extending this database to incorporate
productive derivational morphology would mean an order
of magnitude increase, as full derivation and inflection can
yield ca.103-106 word forms from a single nominal base.
Taking orthogonal prefix combinations into account would
result in another order of magnitude increase, leading to
file sizes unacceptable in a practical system.

Using themagyarispell resources, on the 5 million
word types of the SźoSzablya web corpus (Halácsy et al.
2004),HunSpell ’s recognition performance is about 96%
(OOV is 4%). Taking word frequencies into account OOV
is only 0.2% (i.e. recall is near perfect, 99.8%). While
these figures are quite reassuring for the central use case of
flagging spelling errors, in order to offer high quality re-
placements we can’t ignore rare but perfectly well-formed
complex forms. Decreased OOV is also indispensable for
wide-coverage morphological analysis and Information Re-

5The Finnish version is a closed-source licensed binary (see
http://www.hut.fi/ pry/soikko/openoffice/ ).

6http://magyarispell.sourceforge.net/



trieval applications.
To solve the morphological OOV problemHunSpell

now incorporates a multi-step sequential affix-stripping al-
gorithm. After stripping an affix-cluster in stepi, the re-
sulting pseudo-stem can be stripped of affix-clusters in step
i + 1. Legitimate strippings can be checked in exactly the
same way as for valid online base+affix combinations, and
are encoded with the help of switches in the resource file.
Implementing this only required a minor extension of the
data structure coding affix entries and a recursive call for
stripping. Currently this scheme is implemented for two
steps (plus lexical lookup) for suffixation plus one for pre-
fixation, but can easily be extended to a fully recursive
method.7 From the structuralist perspective, the cluster-
ing step implements a kind of position class analysis (Nida
1949, Harris 1951), and from a generative perspective it
implements a simplified version of lexical phonology and
morphology (Kiparsky 1982). Besides the well-known the-
oretical justifications for this style of analysis, there is a
compelling practical justification in that the size of the affix
table shrinks substantially: with our particular setting for
Hungarian, the multi-step resource is the square root of the
single-step one in size.HunLex can be configured to clus-
ter any or no set of affixes together on various levels, and
therefore resources can be optimized on either speed (to-
ward one-level) or memory use (affix-by-affix stripping).

Prefix–suffix dependencies An interesting side-effect of
multi-step stripping is that the appropriate treatment of cir-
cumfixes now comes for free. For instance, in Hungar-
ian, superlatives are formed by simultaneous prefixation of
leg- and suffixation of-bb to the adjective base. A prob-
lem with the one-level architecture is that there is no way
to render lexical licensing of particular prefixes and suf-
fixes interdependent, and therefore incorrect forms are rec-
ognized as valid, i.e. *legv́en = leg + vén ‘old’. Until the
introduction of clusters a special treatment of the superla-
tive had to be hardwired in the earlierHunSpell code.
This may have been legitimate for a single case, but in
fact prefix–suffix dependences are ubiquitous in category-
changing derivational patterns (cf. Englishpayable, non-
payablebut *non-payor drinkable, undrinkablebut *un-
drink). In simple words, here, the prefixun- is legitimate
only if the basedrink is suffixed with-able. If both these
patters are handled by on-line affix rules and affix rules are
checked against the base only, there is no way to express
this dependency and the system will necessarily over- or
undergenerate.

Compounds Allowing free compounding yields decrease
in precision of recognition, not to mention stemming and
morphological analysis. Although lexical switches are in-
troduced to license compounding of bases byispell ,
this proves not to be restrictive enough. This has been
improved upon with the introduction of direction-sensitive
compounding, i.e., lexical features can specify separately
whether a base can occur as leftmost or rightmost con-

7For the fully recursive version, in order to guarantee termina-
tion, one has to either impose a limit on the number of steps or
make sure that the lengths of pseudo-stems that are the result of
successive legitimate stripping operations converge to zero.

stituent in compounds. This, however, is still insufficient to
handle the intricate patterns of compounding, not to men-
tion idiosyncratic (and language specific) norms of hyphen-
ation.

The MySpell algorithm currently allows any affixed
form of words which are lexically marked as potential
members of compounds.Hunspell improved upon this,
and its recursive compound checking rules makes it possi-
ble to implement the intricate spelling conventions of Hun-
garian compounds. This solution is still not ideal, how-
ever, and will be replaced by a pattern-based compound-
checking algorithm which is closely integrated with input
buffer tokenization. Patterns describing compounds come
as a separate input resource that can refer to high-level
properties of constituent parts (e.g. the number of sylla-
bles, affix flags, and containment of hyphens). The patterns
are matched against potential segmentations of compounds
to assess wellformedness.

3. Stemming and morphological analysis
So far, we only touched upon general issues pertain-

ing to the recognition of morphologically complex forms in
highly inflecting languages. It is easy to realize, however,
that the same general architecture can easily be extended
to more sophisticated analysis tools for morphological pro-
cessing. A straightforward extension we implemented al-
lowedHunSpell to output lexical stems, thereby turning
it into a simplistic stemmer.

Practically, stemmers are used as a recall enhanc-
ing device for Information Retrieval systems (Kraaij and
Pohlmann 1996, Hull 1996). Stemmers ideally conflate se-
mantically related wordforms, so indexing words by their
stems effectively expands the relevant search space. The
relevance of this ubiquitous NLP technique is greater for
languages with rich (inflectional) morphology and/or rela-
tively smaller corpus. Stemmers based on various approxi-
mate heuristics (Porter 1980, Paice 1994) are already quite
robust and ones based on corpus statistics can be totally lan-
guage independent (Xu and Croft 1998). However, these
methods very often produce nonwords the human interpre-
tation of which is difficult, which makes debugging of false
conflations hard. Therefore, once linguistic resources are
available, stemming based on linguistically motivated mor-
phological analysis is beneficial at least from a maintain-
ability perspective.

To turn HunSpell into HunStem, a fully functional
grammar-based stemmer, we had to address several issues
beyond the trivial provision for stem output. First, for the
recognition problem relevant in word-based spellchecking,
no multiple analyses are needed, so the processing of a
word can terminate with the first successful analysis. For
any stemmer of practical use, this is insufficient, and com-
ing up with alternative stems for morphologically ambigu-
ous forms is a definitive requirement. This has been imple-
mented andHunStem now performs exhaustive search for
analyses and outputs all potential stems.

Second, for stemming it is desirable that homonymous
stems be disambiguated if affixation provides the neces-
sary cues. This is usually the case with ambiguous stems
belonging to different paradigms or categories like Hun-



garianhal, which is ambiguous between the verbal read-
ing ‘die’ and the nominal reading ‘fish’. In the original
design, string-identical bases are conflated and there is no
way to tell them apart once their switch-set licensing var-
ious affixes are merged. Fixing this only required minor
technical modifications in the code andHunStem is now
able to handle homonyms and output the correct stem if the
base occurs in disambiguating affix pattern. Note that base-
licensing of incompatible affixes for homonymous stems is
a problem for recognition as well. For instance, in Hungar-
ian,hal, used as a verb, can take various verbal affixes, but
these cannot cooccur with nominal affixes. The problem
is that the architecture is unable to rule out homonymous
bases with illegitimate simultaneous cross-category combi-
nations of prefix and suffix such as *meghalam= megver-
bal prefix +hal ’die V’ + -am ’ POSS1SG nominal suffix’.
Before the correct treatment of homonymous bases was in-
troduced, the only available solution was to list precom-
piled verbal and nominal paradigms separately for these,
which is not only wasteful and error-prone, but also puts
productively derived forms out of scope.

Third, and most importantly, the literal output of lexical
stems looked up in the dictionary resource after affix strip-
ping may not be optimal for stemming purposes without ex-
plicitly addressing the issue of when to terminate the analy-
sis. From the perspective of spellchecking there was no rea-
son to get rid of exactly the affixes one is likely to want to
strip in a typical stemming task. Since the division of labor
between online (runtime) and offline (compile time) affixa-
tion is irrelevant for the recognition task, choices are mainly
biased to optimize efficient storage and/or processing rather
than to reflect some meaningful coherence of dictionary
bases. That is, several morphologically complex forms may
be appear as bases (either listed or off-line precompiled) in
the originalHunSpell resource dictionary, which was not
optimized for stemming output. For instance, Hungarian
exceptional singular accusativefarkat is linguistically de-
rived from stemfarokbut the ispell analysis was based on a
dictionary entry for the plural nominativefarkakfor reasons
of efficient coding. In the current system the adjustment of
conflation classes, i.e., which words are kept unanalyzed
and which affixes are stripped, is therefore flexibly config-
urable: the precompilerHunLex , which replaces our ear-
lier set ofm4macros, creates lexical resources for the stem-
mer based on various parameters, which opens the door to
the creation of task-dependent stemmers optimized differ-
ently for different IR applications.

4. Conclusion
If we aspire to scale open source language technology

to a wide range of languages, the problems exemplified by
Hungarian are but instances of the general problems one
will necessarily encounter along the way, because a sub-
stantial proportion of the world’s languages (e.g., Altaic,
Uralic and Native American languages) are heavily agglu-
tinative. Since scaling to other languages is an important
motivation behind developing our toolkit, we believe that
even those languages with rich morphology, like Turkish or
Basque, which as yet lack MySpell lexical resources, will
eventually benefit from our efforts.

The next logical step is a full-fledged morphological
analysis tool for Hungarian. Many of the prerequisites of
morphological analysis, in particular the flexibility to de-
fine the set of morphemes left unanalyzed at compile time,
were fulfilled in the course of theHunStem development,
and a pilot version ofHunMorph is already operational.
In principle, HunLex method of dictionary resource pre-
compilation is applicable even to Kimmo-style systems,
where the inner loop is based on finite state transduction
rather than the generic string manipulation techniques used
in ispell , but in the absence of a non-restrictive license
open source two-level compiler we are not in a position to
pursue this line of research.

Acknowledgements
The SźoSzablya project is funded by an ITEM grant

from the Hungarian Ministry of Informatics and Telecom-
munications, and benefits greatly from logistic and infras-
tructural support of MAT́AV Rt. and Axelero Internet.

5. References
L. Antal, 1961. A magyar esetrendszer [The Hungarian case sys-

tem]. Nyelvtudoḿanyi Értekeźesek, 29:57–77.
L. Aversano, G. Canfora, A. De Lucia, and S. Stefanucci. 2002.

Evolving ispell: A case study of program understanding for
reuse. InProceedings of the 10th International Workshop on
Program Comprehension, p197. IEEE Computer Society.

B. Dömölki. 1967. Algorithms for the recognition of properties
of sequences of symbols.USSR Computational & Mathemati-
cal Physics, 5(1):101–130. Pergamon Press, Oxford.

P. Haĺacsy, A. Kornai, L. Ńemeth, A. Rung, I. Szakadát and V.
Trón 2003. Creating open language resources for Hungarian.
See LREC Proceedings.

Z. Harris. 1951.Methods in Structural Linguistics. University of
Chicago Press, Chicago.

D. A. Hull. 1996. Stemming algorithms: a case study for detailed
evaluation.J. Am. Soc. Inf. Sci., 47(1):70–84.

C. Jacquemin. 1997. Guessing morphology from terms and cor-
pora. InProceedings of the 20th annual international ACM SI-
GIR conference on Research and development in information
retrieval, 156–165. ACM Press.

P. Kiparsky. 1982. Lexical phonology and morphology. In I.S.
Yang, editor,Linguistics in the Morning Calm, 3–91. Hansin,
Seoul.

W. Kraaij and R. Pohlmann. 1996. Viewing stemming as recall
enhancement. InProceedings of the 19th annual international
ACM SIGIR conference on Research and development in infor-
mation retrieval, 40–48. ACM Press.

J. B. Lovins. 1968. Development of a stemming algorithm.Me-
chanical Translation and Computational Linguistics, 11:22–
31.

E. Nida. 1949.Morphology: The Descriptive Analysis of Words.
University of Michigan, Ann Arbor.

C. D. Paice. 1994. An evaluation method for stemming algo-
rithms. InProceedings of the 17th annual international ACM
SIGIR conference on Research and development in information
retrieval, 42–50. Springer-Verlag New York, Inc.

J. L. Peterson. 1980.Computer programs for spelling correction:
an experiment in program design, volume 96.

M. F. Porter. 1980. An algorithm for suffix stripping.Program,
14(3):130–137.

J. Xu and W. B. Croft. 1998. Corpus-based stemming using cooc-
currence of word variants.ACM Trans. Inf. Syst., 16(1):61–81.


