

NAVAL POSTGRADUATE SCHOOL

MONTEREY, CALIFORNIA

CONVERSATION THREAD EXTRACTION AND TOPIC DETECTION IN TEXT-BASED CHAT
by
Paige Holland Adams
September 2008

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and

 information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited
13. SUPPLEMENTARY NOTES

14. ABSTRACT

Text-based chat systems are widely used within the Department of Defense, but the standard systems available do not provide robust capabilities for search, information retrieval, or information assurance. The objective of this research is to explore methods for the extraction of conversation threads from text-based chat systems in order to enable such tasks. As part of the research, we manually annotated over 20,000 Internet Relay Chat posts with conversation thread information and constructed a probabilistic model for automatically classifying posts according to conversation thread. We also provide an algorithm for extracting these conversation threads from the chat session in order to form discrete documents that may be used in a vector space model information retrieval system. We elaborate how this technique can be used to support search and data mining systems, as well as auditing tasks and guard functions in a security system. Using the developed probabilistic models, we have achieved classification results on par with those of human annotators.
15. SUBJECT TERMS
16. SECURITY CLASSIFICATION OF:

17. LIMITATION OF	18. NUMBER	19a. NAME OF RESPONSIBLE PERSON			
a. REPORT	b. ABSTRACT	c. THIS PAGE	ABSTRACT	OF	OF
Unclassified	Unclassified	Unclassified	UU	191	19b. TELEPHONE NUMBER (inc/ude area code)

THIS PAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution is unlimited

CONVERSATION THREAD EXTRACTION AND TOPIC DETECTION IN TEXT-BASED CHAT

Paige Holland Adams
Lieutenant, United States Navy
B.S.B.A., Hawaii Pacific University, 2000
Submitted in partial fulfillment of the requirements for the degree of
\section*{MASTER OF SCIENCE IN COMPUTER SCIENCE}

from the

NAVAL POSTGRADUATE SCHOOL

September 2008

Author:

Paige Holland Adams

Approved by:
Craig H. Martell
Thesis Advisor

Cynthia E. Irvine Second Reader

Peter J. Denning
Chair, Department of Computer Science

THIS PAGE INTENTIONALLY LEFT BLANK

Abstract

Text-based chat systems are widely used within the Department of Defense, but the standard systems available do not provide robust capabilities for search, information retrieval, or information assurance. The objective of this research is to explore methods for the extraction of conversation threads from text-based chat systems in order to enable such tasks. As part of the research, we manually annotated over 20,000 Internet Relay Chat posts with conversation thread information and constructed a probabilistic model for automatically classifying posts according to conversation thread. We also provide an algorithm for extracting these conversation threads from the chat session in order to form discrete documents that may be used in a vector space model information retrieval system. We elaborate how this technique can be used to support search and data mining systems, as well as auditing tasks and guard functions in a security system. Using the developed probabilistic models, we have achieved classification results on par with those of human annotators.

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

1 INTRODUCTION 1
1.1 MOTIVATION 1
1.2 ORGANIZATION OF THESIS 2
2 BACKGROUND 3
2.1 MILITARY CHAT REQUIREMENTS AND APPLICATION. 3
2.2 NATURAL LANGUAGE PROCESSING AND CHAT 6
2.3 CHAT FEATURES 12
2.4 INFORMATION RETRIEVAL 24
2.5 TEXT CLASSIFICATION 26
3 TECHNICAL APPROACH 37
3.1 DATA SETS 37
3.2 ANNOTATION 40
3.3 FIRST PHASE EXPERIMENTAL TECHNIQUES 41
3.4 SECOND PHASE EXPERIMENTAL TECHNIQUES 45
4 RESULTS 51
4.1 ANNOTATOR OBSERVATIONS 51
4.2 INTER-ANNOTATOR AGREEMENT. 52
4.3 TIME-DISTANCE PENALIZATION RESULTS 54
4.4 MAXIMUM ENTROPY CLASSIFICATION RESULTS 58
5 CONCLUSIONS AND FUTURE WORK 65
A ACRONYMS AND ABBREVIATIONS 67
B GLOSSARY 69
C CHAT ABBREVIATIONS AND INITIALISMS 73
D COMMONLY ENCOUNTERED CHAT EMOTICONS 77
E INTER-ANNOTATOR AGREEMENT RESULTS 83
E. 1 \#\#iphone METRICS 83
E. 2 \#\#physics METRICS 85
E. 3 \#python METRICS 88
F MAXIMUM ENTROPY CLASSIFICATION RESULTS 93
F. 1 \#\#iphone, SAME ANNOTATOR, DIFFERENT SESSION 93
F. 2 \#\#iphone, SAME SESSION, DIFFERENT ANNOTATOR 102
F. 3 \#\#physics, SAME ANNOTATOR, DIFFERENT SESSION 104
F. 4 \#\#physics, SAME SESSION, DIFFERENT ANNOTATOR 113
F. 5 \#python, SAME ANNOTATOR, DIFFERENT SESSION 115
F. 6 \#python, SAME SESSION, DIFFERENT ANNOTATOR 124
G MAXIMUM ENTROPY WITH LDA CLASSIFICATION RESULTS 127
G. 1 \#\#iphone, SAME ANNOTATOR, DIFFERENT SESSION 127
G. 2 \#\#iphone, SAME SESSION, DIFFERENT ANNOTATOR 135
G. 3 \#\#physics, SAME ANNOTATOR, DIFFERENT SESSION 138
G. 4 \#\#physics, SAME SESSION, DIFFERENT ANNOTATOR 146
G. 5 \#python, SAME ANNOTATOR, DIFFERENT SESSION 149
G. 6 \#python, SAME SESSION, DIFFERENT ANNOTATOR 157
H CHAT TOOLS PYTHON CODE 161
LIST OF REFERENCES 171
INITIAL DISTRIBUTION LIST 173

List of Figures

2.1 Calculate Message Dependency for Message i 10
2.2 Turn-taking Conversation Systems Array 15
2.3 Typical Chat Session 16
2.4 Illustration of Conversation Extraction Task. 22
2.5 One-to-one Annotation Metric 24
2.6 Local Agreement Metric 25
2.7 Sample Density Distribution over Simplex 30
2.8 LDA Replicant Plates 31
2.9 Data Model Comparison - Unigram, Unigram Mixture, pLSI 32
2.10 Topic and Word Simplex 33
2.11 AP Topic Category Example 34
2.12 Perxplexity Comparison over AP Corpus 35
2.13 Sample Topic Hierarchy Estimated Using hLDA. 36
3.1 Freenode IRC Server Room List 41
3.2 Chat Viewer Interface Showing Highlighted Threads 42
3.3 Connectivity Matrix Illustration 43
3.4 Thread Extraction Algorithm 45
3.5 Maximum entropy classifier 46
3.6 Maximum Entropy Classifier with LDA Topic Selection 49
4.1 Number of Speaker Posts vs. Number of Conversation Threads 52
4.2 Comparison of Thread Detection Techniques Across Threshold Values for Se- lected Thread of Interest 56
4.3 Effect of Time-Distance Penalization on Chat Post Association 57
4.4 Comparison of Classification Results across All Sessions - Maximum Entropy Classification 61
4.5 Comparison of Classification Results across All Sessions - Maximum Entropy Classification with LDA 63

List of Tables

2.1 US Navy Text-Based Chat Usage in Pacific Fleet and Indian Ocean Areas 4
2.2 COMPACFLT Mission Areas in Which Chat Is Used 5
2.3 Consolidated Functional Requirements for Tactical Military Chat 7
2.4 42 Dialog Act Labels for Conversational Speech 9
2.5 27 Initial Post Features 11
2.6 15 Post Act Classifications for Chat 12
2.7 12 Dialog Act Classifications for Task-Oriented Instant Messaging 12
2.8 Turn Allocation Techniques in Spoken Language 14
2.9 Chat Session Extract Illustrating Use of Mentions 18
3.1 Sample Topic Banner from \#python Channel 38
3.2 Conversation Thread-annotated Files from Freenode IRC Server 40
3.3 Thread Detection Techniques 44
4.1 Summary Annotation Metrics for \#\#iphone Chat Sessions 53
4.2 Summary Annotation Metrics for \#\#physics Chat Sessions 53
4.3 Summary Annotation Metrics for \#python Chat Sessions 53
4.4 Maximum Entropy Results, Same Annotator, Different Sessions, \#\#iphone 59
4.5 Maximum Entropy Results, Same Session, Different Annotators, \#\#iphone 59
4.6 Maximum Entropy Results, Same Annotator, Different Sessions, \#\#physics 59
4.7 Maximum Entropy Results, Same Session, Different Annotator, \#\#physics 60
4.8 Maximum Entropy Results, Same Annotator, Different Sessions, \#python 60
4.9 Maximum Entropy Results, Same Session, Different Annotator, \#\#physics 60
4.10 Maximum Entropy Model versus Human Annotation Accuracy 60
4.11 Classification results of same-session training and testing (different annotators) across all sessions using maximum entropy classification. 61
4.12 Classification results of same-session training and testing (different annotators) across all sessions using maximum entropy classification with LDA topic detection.

Acknowledgements

There were many people responsible for the completion of this thesis and to whom I owe my gratitude. First and foremost, I would like to thank my advisor, Prof. Craig Martell, for giving me the opportunity to pursue incredibly interesting work, the freedom to explore different avenues, and the encouragement and support necessary in an undertaking of this magnitude.

I would additionally like to thank Prof. Kevin Squire for providing me with the knowledge, tools, and guidance to start unraveling the mysteries of machine learning and Prof. Cynthia Irvine for the support and motivation for this research and for introducing me to the surprisingly fascinating theoretical aspects of computer security and information assurance.

Thanks to Lt. Col. Eric Forsyth and Ms. Jane Lin, my predecessors in this line of research and without whom my task would have been significantly more difficult (if not impossible). Also thank you to my lab partner, Ensign Grant Gehrke, who entertained my strange ideas and had an uncanny knack for suggesting the correct course of action whenever I found myself stymied by a thorny problem.

A special thank you to my fearless annotators - Stephen Dimitriou, Eric Johnson, and Lawrence Keener - who slogged undauntedly through many hours of chat. Without their support this project would have never left the ground. Thanks also to Constantine Perepelitsa for providing superior technical support and so much more.

Thank you to Dr. LorRaine Duffy and Ms. Emily Medina of Naval Space and Warfare Systems Command San Diego (SSC-SD), whose enthusiastic embrace of chat in the Department of Defense inspired this research.

Acknowledgements to SSC-SD for providing the financial support for the equipment and travel used in this thesis.

Thanks to Donald Knuth and Leslie Lamport for $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ and $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$, respectively, which made the writing of this thesis more enjoyable than it would have been otherwise. And thanks particularly to Prof. Simson Garfinkel for the excellent NPS thesis template and an always rapid response to my countless requests for assistance.

Thanks to my parents for the guidance and support they have given me over the years. Thanks especially to my father, a U.S. Army National Guard veteran, who encouraged me to join the Navy.

Finally, none of this would have been possible without the tremendous support of my wife, Masako, whose patience knows no bounds, and my two wonderful daughters, Chelsea and Abigail. Rest assured, they deserve as much credit for this work as I.

THIS PAGE INTENTIONALLY LEFT BLANK

CHAPTER 1: INTRODUCTION

1.1 MOTIVATION

In the last decade, computer-mediated communications (CMC) such as e-mail, chat, and instant messaging have transformed global information flow. In the US military, applications such as email and chat have expanded beyond their use as administrative support tools and now function as warfighting enablers, enhancing and in some circumstances, supplanting, traditional tactical systems. Rapid communication has often played a decisive role in warfare and is an especially critical element in today's complex combat environment, where participants may be dispersed over great geographical distances, may have varying clearance levels or varying levels of "need-to-know," or may consist of multinational coalition partners. Tactical chat, in particular, has emerged as an indispensable tool for military professionals to communicate, analyze, and fuse information with peers and allies in a real-time environment.

Despite the numerous advantages, there are several challenges in realizing the full potential of computer-mediated communications. One such challenge, exacerbated by the proliferation in use of these tools, is how to find and extract useful information information rapidly. This is a particularly difficult task in media such as chat due to the highly dynamic conversational environment coupled with a typically large number of participants. Another significant challenge is in the bridging of these applications across domain boundaries, whether from an SI to a GENSER network, or between US and coalition partner systems. The risk of losing tactical advantage due the time delay required for an air gap transfer of information to take place is real. This delay can be minimized through the use of guards that connect systems with different trust levels and allow the exchange of authorized data. Existing guards use techniques such as labeling and keyword filtering to manage secure information flow; however, these mechanisms are not able to detect knowledge inference within message content, therefore the possibility of sensitive information "leakage" remains.

To increase the value of tactical chat to the warfighter, we wish to address these two main challenges, namely: 1) information retrieval and 2) information filtering. This thesis presents an overview of chat and current state-of-the-art natural language processing techniques and related work that may be employed to help in achieving our goals. We then present a methodology and
algorithms for processing chat, along an evaluation of the results.

1.2 ORGANIZATION OF THESIS

We have organized this thesis as follows. In Chapter 1 we provide the motivation for chat analysis and the development of techniques for information extraction and filtering. Chapter 2 provides: 1) an overview of chat, including its linguistic structure and comparison with other forms of dialog in spoken and written communications, 2) an overview of the tactical chat requirements, and 3) general natural language processing techniques as well as related NLP chat work. In Chapter 3 we detail our technical approach, to include a discussion of the chat corpora used, the algorithms employed, and the set-up of our experiments using this data along with the evaluation metrics. Chapter 4 discusses the results of our experiments, specifically the performance of our algorithms on the following three tasks: 1) conversation thread extraction, 2) topic detection and retrieval, and 3) topic filtering. In Chapter 5 we conclude with a summary of our work along with recommendations for future research.

CHAPTER 2: BACKGROUND

In this chapter we briefly discuss the requirements for military use of tactical chat, then examine areas where natural language processing (NLP) can support these requirements. We provide a background on commonly-used NLP techniques that address some of the tasks required, along with some statistical techniques that could be employed to augment performance. Finally, we discuss related work in the field and how some of these approaches might be used to address the concerns of tactical chat. Technical terms, acronyms, and abbreviations are provided for reference in Appendices B and A.

Fundamentally, the first task that we are interested in accomplishing is that of information retrieval (IR). Manning et al. define information retrieval as "finding material (usually documents) of an unstructured nature (usually text) that satisfies an information need from within large collections (usually stored on computers)" [1, p. 1]. As this indicates, most IR tasks involve searching across discrete collections of documents, e.g., text documents in an file system or web pages on the Internet. With chat, however, the IR task is slightly more complex. With standard search tools one could search across a collection of archived chat logs and return those that match based upon the search criteria. A problem with this approach is that the file may be quite large and contain a large volume of posts by many participants. These posts may comprise many conversations about a great number of topics. The searcher is likely only interested in a single topic or smaller subset of topics. The ideal scenario would be to return only the topicrelated posts and, for contextual purposes, other posts in the same conversation thread. This is the task that we set out to accomplish in this study. Before addressing the specifics of how that task might be accomplished, we feel that it is instrumental to first look at how chat is currently being used in the military and to what degree.

2.1 MILITARY CHAT REQUIREMENTS AND APPLICATION

Text-based chat is used extensively by all military branches and throughout the Department of Defense. It is used for unit-level tactical coordination as well as broad-scale strategic planning and joint operations. Increasingly, it is becoming a preferred tool for communication between disparate platforms or with coalition partners. In 1996, Eovito conducted a comprehensive

PRNOC	
Area	Pacific Fleet
Servers	2 primary, 1 backup
Chat rooms	$400-500$ (typical), 500-650 (exercise)
Users	$400-600$ (typical), 600-100 (exercise)
IORNOC	
Area	Indian Ocean and Arabian Gulf
Servers	1 primary, 1 backup
Chat rooms	$500-650$ (typical)
Users	$900-1300$ (typical), 5000+ (major combat operations)
Table 2.1: US Navy text-based chat usage in Pacific Fleet and Indian Ocean areas	

survey of joint tactical chat usage [2], which provides a useful starting point for our discussion.

2.1.1 Fleet Tactical Use

In [2], Eovito outlined requirements for a joint tactical chat system based upon a study of actual chat usage in several different environments: combat operations in Operation ENDURING FREEDOM, counter-insurgency operations in Operation IRAQI FREEDOM, and disaster relief operations in support of Joint Task Force - Katrina. Eovito notes that the use of chat among joint forces has evolved in an ad hoc fashion in an effort to fill gaps in existing command and control (C2) systems, but has become an essential communications tool favored over more traditional methods. The aim in this study was to determine actual operator requirements based upon the capabilities and usage of current chat systems so that these requirements can be used in the development of future C2 systems.

In a 2008 survey conducted by the Naval Space and Warfare Systems Command [3], US Navy Fleet commands were asked questions regarding their text-based chat usage, including specific mission areas in which it was used as well as number of servers and users. Chat server usage as reported by the Pacific Regional Network Operations Center (which overs the Pacific Fleet area of operations) and the Indian Ocean Regional Network Operations Center (whose responsibility includes the Indian Ocean and Arabian Gulf) are found in Table 2.1. Some of the mission functions in which chat plays a role, as reported by COMPACFLT, are in Table 2.2.

Chat, as a command and control medium, has several advantages over other C2 systems, particularly in a naval environment. Some of the advantages outlined in Eovito's study include:

Mission Area
Over-the-horizon targeting coordination
Intelligence
Information warfare command
Link coordination
Logistics
Maritime interdiction operations
Tomahawk land attack missile coordination
Maritime security operations
Anti-terrorism/Force protection coordination
Combat cargo operations
Air resource element coordination
Meteorological weather coordination
Medical coordination
Mine warfare operations
Coast Guard/Homeland security
Marine Forces intelligence collaboration
Training

Table 2.2: COMPACFLT mission areas in which chat is used.

1. Bandwidth. The bandwidth requirements for text-based chat are far less than for other data systems. This is important in bandwidth-constrained tactical environments, particularly for smaller naval tactical units which have less available bandwidth.
2. Speed. Chat is faster than other systems both due to rapid transmission time of text and also due to the more rapid turnaround as compared to other methods such as message traffic, or even radio or phone calls since chat provides for simultaneous transcription and dissemination.
3. Ease-of-use. Most chat clients have a very shallow learning curve compared to other C2 systems, requiring less training.
4. Availability. Users typically experience a higher degree of availibility of chat compared to other C2 systems. According to [2], users "reported that chat was the only form of communication in many cases, where units were too far for voice, and the available transmission systems lacked the bandwidth for larger C2 systems." Also, many Command, Control, Communications, Computer, and Intelligence (C4I) plans call for chat to be one of the first systems available when deployed, making it useful as a coordination tool for bringing other C2 systems online.
5. Efficiency. Tactical users often find that "chat allows them to send more data with less time and effort" [2]. Also, it is easy to monitor chat while working with other onscreen tools, maps, etc. Since chat provides a running transcript, users spend less time having to repeat information that was previously disseminated, and as they may participate in multiple chat rooms, it is easier to target a designated audience.

Based on current chat usage patterns coupled with existing C2 requirements, Eovito suggests requirements for future tactical chat systems (see Table 2.3). Both CENTCOM and NORTHCOM have cross domain requirements for chat, with CENTCOM's requirements stating that a system should be "capable of sending messages between different networks of various security [classifications]." This implies a need for ensuring that the messages sent do not violate security policies in the process.

2.1.2 Data Mining

Eovito's thesis concludes by listing several areas for future research in support of tactical chat. One such area is data mining. According to Eovito, "[m]odern data and text mining tools applied to chat logs present unique knowledge discovery opportunities" [2]. It is the aim of this thesis to take steps in that direction and explore the structure of chat and how we might exploit features inherent in chat to enable data mining systems.

2.1.3 Information Assurance

With the desire to use chat as a bridge across multi-domain environments comes an even greater need for attention to information assurance implications. Accordingly, we also examine topic management within the context of information assurance, i.e., we attempt to provide methods for auditing chat sessions to locate topics that may have security considerations, as well as discuss possibilities for online chat guards that can allow or disallow topics consistent with a defined security policy.

2.2 NATURAL LANGUAGE PROCESSING AND CHAT

Statistical natural language processing (NLP) techniques are frequently employed in the analysis and processing of spoken conversation. These tools and methods that NLP provide have recently proven useful in the analysis of text-based chat as well. In this section, we provide an overview of relevant NLP methodology and its application toward chat analysis. In particular,

1. Participate in Multiple Concurrent Chat Sessions*
2. Display Each Chat Session as a Separate Window
3. Persistent Rooms and Transitory Rooms*
4. Room Access Configurable by Users
5. Automatic Reconnect and Rejoin Rooms*
6. Thread Population/Repopulation*
7. Private Chat "Whisper"*
8. One-to-One IM (P2P)
9. Off-line messaging
10. User Configured System Alerts
11. Suppress System Event Messages
12. Text Copying*
13. Text Entering*
14. Text Display*
15. Text Retention in Workspace*
16. Hyperlinks
17. Foreign Language Text Translation
18. File Transfer
19. Portal Capable
20. Web Client
21. Presence Awareness/Active Directory*
22. Naming Conventions Identify Functional Position*
23. Multiple Naming Conventions*
24. Multiple User Types
25. Distribution Group Mgmt. System for Users
26. Date/Time Stamp*
27. Chat Logging*
28. User Access to Chat Logs*
29. Interrupt Sessions
(* denotes a core requirement)
Table 2.3: Consolidated functional requirements for tactical military chat (from [2])
we begin with a discussion of recent NLP work involving chat, then discuss several statistical NLP techniques that may be applied to chat.

2.2.1 Author Profiling

Detecting sexual predator and other illegal activity within chat is a common goal since the medium has a strong attraction for individuals with this type of behavior. Toward this end, automatic author profiling - determining the gender, age, background, etc., of an author - is desired in order to determine, for example, if someone is attempting to hide his or her true identity. Lin conducted a study of techniques for author profiling within a chat domain [4] in
which approximately 400,000 posts from age-specific chat rooms were collected and analyzed. This chat currently forms the core of the NPS Chat Corpus (a more complete discussion of which is found in Chapter III), which was one of the key corpora used in our research.

Lin selected surface details of the collected chat conversations to include average number of words per post, size of the vocabulary, use of emoticons, and the use of punctuation [4]. Using the author's self-reported profile to establish the "true" age and gender, Lin then used the naïve Bayes method to classify each user based upon these features. Although this initial study had mixed results, it highlighted several areas for future improvement, including the usage of a more comprehensive surface feature set such as distribution over all words, and the inclusion of deeper features (e.g., syntactic structure).

In order to enable further methods such as those proposed by Lin, Forsyth developed a richer NLP chat methodology [5]. Taking advantage of Lin's work, he sought to lay the groundwork for further analysis of the syntactic structure of chat through the automatic tagging of part-ofspeech and dialog act information.

2.2.2 Dialog Act Modeling

A dialog act is the description of the role that a given sentence, phrase, or utterance plays in a conversation. For example, Is it raining today? would be labeled as a YES/NO Question to indicate the role that it plays in the conversation, which also serves as an indication of its relationship with other posts in the same conversation thread. Labeling of dialog acts is typically conducted manually, but can be a tedious task. Several studies have been conducted on building probabilistic models for automatic dialog act labeling.

In [6], Stolcke et al. describe a method for the automatic dialog act labeling of utterances in conversational speech by treating the discourse structure of a conversation as a hidden Markov model. Training and evaluating the model using 1,155 conversations drawn from the Switchboard corpus of spontaneous human-to-human conversational speech, they achieved a model accuracy of 65 percent based on automatic word recognition and 71 percent based on word transcripts. This compares to a human accuracy of 84 percent on the same task. The 42 dialog acts found within Switchboard along with an example and their frequency of occurrence in the database are shown in Table 2.4.

Forsyth [5] applied a modification of techniques described in [6] to text-based chat. Using the

Tag	Example	Percent of Total
Statement	Me, I'm in the legal department.	36\%
Backchannel/Acknowledge	Uh-huh.	19\%
Opinion	I think it's great.	13\%
Abandoned/Uninterpretable	So, -/	6\%
Agreement/Accept	That's exactly it.	5\%
Appreciation	I can imagine.	2\%
Yes-No-Question	Do you have to have any special training?	2\%
Non-Verbal	$<$ Laughter $>$, < Throat_clearing $>$	2\%
Yes Answers	Yes.	1\%
Conventional-Closing	Well, it's been nice talking to you.	1\%
Wh-Question	What did you wear to work today?	1\%
No Answers	No.	1\%
Response Acknowledgment	Oh, okay.	1\%
Hedge	I don't know if I'm making any sense or not.	1\%
Declarative Yes-No-Question	So you can afford to get a house?	1\%
Other	Well give me a break, you know.	1\%
Backchannel-Question	Is that right?	1\%
Quotation	You can't be pregnant and have cats.	0.5\%
Summarize/Reformulate	Oh, you mean you switched schools for the kids.	0.5\%
Affirmative Non-Yes Answers	It is.	0.4\%
Action-Directive	Why don't you go first.	0.4\%
Collaborative Completion	Who aren't contributing.	0.4\%
Repeat-Phrase	Oh, fajitas.	0.3\%
Open-Question	How about you?	0.3\%
Rhetorical-Questions	Who would steal a newspaper?	0.2\%
Hold Before Answer/Agreement	I'm drawing a blank.	0.3\%
Reject	Well, no.	0.2\%
Negative Non-No Answers	Uh, not a whole lot.	0.1\%
Signal-Non-Understanding	Excuse me?	0.1\%
Other Answers	I don't know.	0.1\%
Conventional Opening	How are you?	0.1\%
Or-Clause	or is it more of a company?	0.1\%
Dispreferred Answers	Well, not so much that.	0.1\%
3rd-Party-Talk	My goodness, Diane, get down from there.	0.1\%
Offers, Options, \& Commits	I'll have to check that out.	0.1\%
Self-talk	What the word I'm looking for	0.1\%
Downplayer	That's all right.	0.1\%
Maybe/Accept-Part	Something like that.	< 0.1\%
Tag-Question	Right?	< 0.1\%
Declarative Wh-Question	You are what kind of buff?	< 0.1%
Apology	I'm sorry.	< 0.1\%
Thanking	Hey, thanks a lot	< 0.1%

Table 2.4: 42 dialog act labels for conversational speech. (From [6]) Percentage indicates the frequency of posts in the corpus with the given dialog act label.

NPS Chat Corpus, Forsyth successfully automated part-of-speech tagging of chat posts with a 90.8 percent accuracy and dialog act classification with a 83.2 percent accuracy. For dialog act classification, Forsyth used a set of fifteen classification labels constructed by Wu et al.

```
\(d \leftarrow i\)
repeat
    \(d \leftarrow d-1\)
    typing_rate \(\Leftarrow \frac{\operatorname{time}\left(M_{i}\right)-\operatorname{time}\left(M_{d}\right)}{/}\) length \(\left(M_{i}\right)\)
until typing_rate \(<\) typing_threshold or \(d=1\) or \(\operatorname{speaker}\left(M_{i}\right)=\operatorname{speaker}\left(M_{d}\right)\)
```

Figure 2.1: Calculate message dependency for message i (from [8])
[7] specifically for text-based chat dialog. These labels are shown in Table 2.6. The bestperforming dialog act classification model was constructed by using a neural network with 23 input features. The complete set of 27 features tested by Forsyth are shown in Table 2.5.

For the POS-tagging task, Forsyth evaluated several tagging methods including using n-gram taggers, hidden Markov model (HMM) taggers, and Brill transformational-based learning taggers trained on a variety of sources which included the Wall Street Journal, Brown corpus, Switchboard, Penn Treebank, and others. The best performance in this study was realized by a tagger that used combination of techniques: the Brill tagger, with back off to the HMM, and n-gram taggers. This approach achieved a mean accuracy of 90.8 percent. This was followed by the HMM tagger with a mean accuracy of 88.5 percent [5].

Another approach to dialog act tagging, using instant messaging (IM) instead of chat, was undertaken by Ivanovic [8]. This work was aimed at an analysis of online shopping assistance provided by the MSN Shopping website. Ivanovic's approach differed from that of the Wu and Forsyth studies in that he considered the dialog act of utterances in the conversation stream independent of the post level. An utterance under this scheme can span more than one post or contain multiple utterances in a single post. Ivanovic's initial task of utterance segmentation was accomplished manually by hand-annotation of the dialog acts within each post using the twelve dialog act labels show in Table 2.7. Ivanovic then applied an algorithm (shown in Figure 2.1) to re-synchronize the posts in order to overcome the inherent asynchrony of the message stream. This algorithm used typing rate and time between posts to determine, given a pair of posts, whether one post was dependent upon the other. Dependency in this case was defined in terms of a message being posted by a user having had knowledge of the preceding post. The second post would then be deemed as dependent upon the first. Using these resynchronized threads with a naïve Bayes classifier and an n-gram model ($n=1,2$, and 3), Ivanovic achieved an average bigram (units of evaluation comprising two words) accuracy of 81.6 percent.

Feature	Definition	Rationale
f0	Number of posts ago the poster last posted	Indicator for a Continuer act
f1	Number of posts ago the poster made a spelling error	Indicator for a Clarify act
f2	Number of posts ago that a post contained a '?' but no WRB or WP POS tag	Indicator for a Yes/No Answer act
f3	Number of posts in the future that contained a Yes or No word	Indicator for a Yes/No Question act
f4	Number of posts ago that contained a Greet word	Indicator for a Greet act
f5	Number of posts in the future that contained a Greet word	Indicator for a Greet act
f6	Number of posts ago that contained a Bye word	Indicator for a Bye act
f7	Number of posts in the future that contained a Bye word	Indicator for a Bye act
f8	Number of posts ago that a post was a JOIN	Indicator for a Greet act
f9	Number of posts in the future that a post is a PART	Indicator for a Bye act
f10	Total number of words in post	Longer posts may be Statements and Questions, shorter posts may be Emotions and Greets/Byes, etc.
f11	First word is a conjunction, preposition, or ellipses (POS tag of 'CC,' 'IN,' or ' $:$ ')	Indicator for a continuer act
f12	A word contains emotion variants such as 'lol,' ';), etc.	Indicator for an emotion act
f13	A word contains 'hello' or variants	Indicator for a Greet act
f14	A word contains 'goodbye' or variants	Indicator for a Bye act
f15	A word contains 'yes' or variants	Indicator for Yes or Accept acts
f16	A word contains 'no' or variants	Indicator for No or Reject acts
f17	A word POS tag is 'WRB' or 'WP'	Indicator for a Wh-Question act
f18	A word contains one or more '?'	Indicator for Wh- or Yes/No Question acts
f19	A word contains one or more '!' (but not a '?')	Indicator for an Emphasis act
f20	A word POS tag is ' X '	Indicator for an Other act
f21	A word is a system command (‘$!$ or '!' with SYM POS tag)	Indicator for a System act
f22	A word is a system word, e.g., JOIN, MODE, ACTION, etc.	Indicator for a System act
f23	A word is an 'any' variant, e.g., 'anyone,' 'n e,' etc.	Indicator for a Yes/No Question act
f24	A word is in all caps, but not a system word like 'JOIN'	Indicator for an Emphasis act
f25	A word is an 'even' or 'mean' variant	Indicator for a Clarify act
f26	Total number of users currently in the chat room	More users may stretch out distances between adjacency pairs

Table 2.5: 27 initial post features (from [5])

Tag	Example	Percent
Statement	I'll check after class	42.5%
Accept	I agree	10.0%
System	Tom [JADV @ 11.22.33.44] has left \#sacbal	9.8%
Yes-No-Question	Are you still there?	8.0%
Other	$* * * * * * * * * *$	6.7%
Wh-Question	Where are you?	5.6%
Greet	Hi, Tom	5.1%
Bye	See you later	3.6%
Emotion	lol	3.3%
Yes-Answer	Yes, I am.	1.7%
Emphasis	I do believe he is right.	1.5%
No Answer	No, I'm not.	0.9%
Reject	I don't think so.	0.6%
Continuer	And...	0.4%
Clarify	Wrong spelling	0.3%
	Table 2.6: 15 post act classifications for chat (from [7])	

Tag	Example	Percent
Statement	I am sending you the page now	36.0%
Thanking	Thank you for contacting us	14.7%
Yes-No-Question	Did you receive the page?	13.9%
Response-Ack	Sure	7.2%
Request	Please let me know how I can assist	5.9%
Open-Question	how do I use the international version?	5.3%
Yes-Answer	yes, yeah	5.1%
Conventional-Closing	Bye Bye	2.9%
No-Answer	no, nope	2.5%
Conventional-Opening	Hello Customer	2.3%
Expressive	haha, :-), grr	2.3%
Downplayer	my pleasure	1.9%

Table 2.7: 12 dialog act classifications for task-oriented instant messaging (from [8])

2.3 CHAT FEATURES

In order to perform tasks such as classification on chat, we must first identify features which may inform our classification model. A useful starting point in feature identification is to look at the basic characteristics of that which we are trying to classify. Much work has been done in the examination of the dynamics of spoken conversation, so we will begin with an overview of general conversation characteristics, then turn toward those features that distinguish text-based chat from spoken conversation.

2.3.1 Conversation Features

As defined by Zitzen and Stein, "[c]hat programs are multi-user, synchronous, computer-mediated communications systems, which allow communication among spatially distal participants" [9].

In its basic form, chat is most similar to spoken conversation, sharing many characteristics with multi-party spoken dialog. Thus, it is useful to examine the dynamics of spoken conversation as a starting point for our chat analysis. In particular, we are interested in turn-taking and what factors influence this in spoken dialog as well as chat. Sacks et al. [10] noted the following basic observations regarding spoken conversation:

- Speaker-change recurs, or at least occurs.
- Overwhelmingly, one party talks at a time.
- Occurrences of more than one speaker at a time are common, but brief
- Transitions (from one turn to a next) with no gap and no overlap are common. Together with transitions characterize by slight gap or slight overlap, they make up the vast majority of transitions.
- Turn order is not fixed, but varies.
- Length of conversation is not specified in advance.
- What parties say is not specified in advance.
- Number of parties can vary.
- Talk can be continuous or discontinuous.
- Turn-allocation techniques are obviously used. A current speaker may select a next speaker (as when he addresses a question to another party); or parties may self-select in starting to talk. See Table 2.8 for a full description of turn-allocation techniques.
- Various 'turn-constructional units' are employed; e.g., turns can be projectedly 'one word long,' or they can be sentential in length.
- Repair mechanisms exist for dealing with turn-taking errors and violations; e.g., if two parties find themselves talking at the same time on of them will stop prematurely, thus repairing the trouble.

1. The current speaker may implicitly or explicitly select the next speaker, who is then obliged to speak.
2. If the current speaker does not select the next speaker, the next speakership may be self-selected. The one who starts to talk first gets the floor.
3. If the current speaker does not select the next speaker, and no self-selected speakership takes place, the last speaker may continue.
4. If the last (current) speaker continues, rules 1-3 reapply. If the last (current) speaker does not continue, the the options recycle back to rule 2 until speaker change occurs.

> Table 2.8: Turn allocation techniques in spoken language (from [10])

Aoki et al. detailed several qualitative phenomena of spoken conversation in a study of multiparty interaction [11]. They note the existence of floors - instantiations of the turn-taking mechanism in effect - and remark that it is not uncommon for multiple floors to exist within a social participation framework. They use Egbert's definition of schism as "the emergence of an additional floor amidst ongoing floor(s)" in a multi-party interaction [12]. Three phenomena that lead to schism were outlined:

1. Schism by Schism Inducing Turn. Described by Egbert as having three characteristics:

- It causes a change in topic.
- It is the first part of a pair of turns (such as the question in a question-answer pair) that initiates a new sequence.
- It directly targets a specific recipient or recipients.

2. Schism by Toss-Out. A "toss-out" is defined as a type of action that is topic-relevant to the conversation at hand, does not target a specific audience, and does not require a response or acknowledgement. Aoki et al. observe three different outcomes that may result from a toss-out:

- No response may be generated. No new conversation floor emerges.
- A response may be generated that follows the trajectory of the in-process conversation. No new conversation floor emerges.
- A response may be generated that creates a new trajectory parallel to the conversation that produced the toss-out. A new conversation floor is created.

3. Schism by Aside. Asides are similar to toss-outs in that they are topic-relevant to the ongoing conversation and they do not require a response. The biggest distinction between the two is that asides are designed to be intentionally marginal to the ongoing conversation. In spoken conversation, these may be differentiated audibly, for example, by speaking in a more subdued tone. In chat, an aside might be marked by text in parentheses or some other delimiter that sets it apart from the main utterance. A chat initialism, emoticon, or IRC action may also be an indicator for an aside.

Sacks describes differential turn-taking systems as scale with one polar extreme being represented by one-turn-at-a-time allocation instances such as face-to-face conversation and the other extreme by preallocated turn instances as typified by debates. Admitting text-based chat to this model, we might consider an extension to the scale with chat forming a new extreme opposite the preallocation pole and face-to-face conversation occupying a location in between these poles (see Figure 2.2). This array is representative of the flexibility of the turn-taking system being used.

Figure 2.2: Turn-taking conversation systems array
To underscore the differences between chat and spoken conversations, Zitzen and Stein suggest that in chat "a much more intricate and complicated layering of partial [turn-taking] mechanisms" exists beyond those suggested by Sacks [9]. In particular, the role that technology plays is emphasized. For example, the speaker selection properties listed in Table 2.8 are replaced by a "first message to server, first message posted to dialog frame" method of conversation-floor selection. Thus, personal relationships perform a secondary role in selection for chat, rather than a primary role as in spoken conversation.

An additional difference noted by Zitzen and Stein involves the concepts of hearer and speaker. In spoken conversation, these roles are discrete and distinct; an individual can only perform in one role at a given time. In chat, however, the delineation is not as sharply drawn. A "hearer" may be "speaking" (i.e., typing a response) at the same time that a message is received. Similarly, many individuals may be "speaking" (typing) at the same time. Which individuals holds
the floor is determined by which message arrives at the server first and either: 1) continues the conversation or 2) generates a schism.

Figure 2.3: A typical chat session shown in pidgin chat client. (User names and identifying information intentionally blurred for anonymity.)

2.3.2 Chat Specific Features

Although chat is in many ways similar to spoken conversation, it does have characteristics which make it unique and which could serve as useful features in building a classification model for conversation thread detection. The following is a discussion of some the more important of these characteristics.

- Chat initialisms (CIs) are abbreviations and acronyms that have arisen in chat to convey common actions or commonly expressed emotions. For example, the phrase be right back is often abbreviated as BRB and laughing out loud (used to denote or convey appreciation of humor in a post or posts) becomes $L O L$. A more complete list of commonly used initialisms can be found in Appendix C.
- Emoticon usage. Emoticons are symbols formed from ASCII characters that express an emotion or mood and are often used as a proxy for speech or body language cues that are not available in text-based chat. A list of commonly-used emoticons can be found in Appendix D. An interesting point to note regarding emoticons is that, although they are used in many different cultures and languages, there is a distinct difference in style between Western emoticons and Eastern emoticons. Western-style emoticons are generally "read" by tilting one's head to the left, turning the horizontal ASCII characters into a vertical depiction of a character. Constrastingly, Eastern-style emoticons are typically designed to be read in a horizontal format. For example, a face may be formed by (*_*), where the underscore represents a mouth and the asterisks form eyes. In Japan, such emoticons are known as emoji and are quite standardized in usage. It is common to find emoji character sets built into mobile phones for use in text messaging and mobile e-mail.
- Abbreviated speech (grammar/spelling shorthand) - misuse of grammar and spelling is often more tolerated in chat than in other forms of communication, and may in many cases be intentional.
- Mentions. In order to clarify to whom a particular post is directed, the technique of mentioning is often used. This most often takes the form of using the targeted user's name in a post, though it might also take the form of repeating a key word or words of the post or posts to which it is responding. An example of the use of mentions is shown in Table 2.9.
- Textual devices. Chat participants often use clever textual devices other than emoticons as a method of clarification or adding additional information. For example, if a mention is omitted from a response, the responder may immediately follow up with the user's name and a caret symbol (${ }^{\wedge} \times$ ') to indicate that the preceding post being pointed to by the symbol is directed toward that user. Users also use this symbology self-referentially, posting some variation of '<-----' to indicate that an action or statement refers to the user themself.

Antonietta Marcy	why does it tell me my list is a non-sequence now ... that's no list
Tanna	Demarcus: bar $=($ percent * '\#' $)+\left((\text { percent }- \text { bar_size })^{*}{ }^{\prime}{ }^{\prime}\right)$
Demarcus	looks fine
Antonietta	Marcy: actually, it told me that when i did for (index, entry) in list: (i forgot enumerate) is that right?
Tanna	test time
Tanna	hmm, instead of putting '-' s, it just leaves blank spaces, let me try something
Mickie	hey guys... in the try/except block... in the except block for the err... how can i capture the err/msg generated by the app when it fails..??
Marcy	Antonietta: it took an entry from the list, and tried to unpack it into the two variables
Tanna	oh, got it I guess: bar_size - percent, would be the right thing
Tanna	yeah that was it :)
Antonietta	Marcy: yes, i understand that it broke, but should it tell me its trying to iterate a non-sequence?
Tanna	thanks Demarcus, looks much better now :)
Demarcus	np

Table 2.9: Chat session extract illustrating use of mentions (in italics).

2.3.3 Social Networking in Chat

The social nature of chat lends itself to an analysis of the network of relationships that are formed in the course of a chat session (and across multiple sessions). We are at the beginning stages of exploring the effect that user participation has on topic thread detection by considering user names ("nicknames") as a feature in our post vector. The intuition behind this is that, other considerations aside, a post by a given user is more likely to be associated with the conversation with which the user's previous post was associated.

Tuulos and Tirri [13] conducted a detailed analysis of the use of social network analysis and topic models in chat data mining. An observation made in their research was that, unlike in face-to-face conversation where non-verbal cues such as eye contact and physical proximity dictate the targeting of a conversation, chat must rely on verbal cues. This means, for example, that individual posts targeted toward a certain recipient will often contain the nickname of that recipient in the text of the post ${ }^{1}$.

Tuulos and Tirri augmented chat topic models with social networking information using graphbased features such as the indegree, outdegree, and complementary outdegree of a node that represents a chat user. Additionally, they applied Google's PageRank concept to this graph-

[^0]based model and experimented with filtering and biased sample weighting schemes. Their results showed that the indegree of a chat user node was the best indicator of a chat user with topic predictive content in their posts.

2.3.4 Interactional Coherence

Although conversation thread disentanglement is a difficult task for a computer, human beings can do it quite well. O'Neill and Martin analyzed human performance in tracking interaction in text based chat [14]. Their study refuted previous contentions that the unique properties of textbased chat, e.g., quasi-synchronicity and potential for multiple simultaneous conversations, can lead to interactional incoherence. Their study is a useful starting point for examining the way human beings work together in a chat environment for constructing a coherent conversation. By looking at human methodology, we might discover methods useful in training a machine to accomplish a similar task.

Previous researchers cited a lack of control over turn positioning as one problem contributing to interactional incoherence in chat. That is, due to the simultaneity property, there is no guarantee that turns will appear in the order that would be expected in a face-to-face conversation. An answer to a question, for example, may not directly follow the question to which it is responding. There may in fact be several unrelated or partially-related posts in between. O'Neill and Martin note that other researchers of text-based chat have perceived this lack of serial adjacency to be a cause of thread confusion, since location of a turn in spoken conversation is partially responsible for being able to determine its meaning. They cited this concern as the impetus for a redesign of user interfaces in an attempt to compensate for the multi-threading. In these interfaces, users could select the thread to which their post belonged and the posts would appear spatially separated according to thread. A problem noted with this is that participants had no specific point of focus in the interface since new entries could appear anywhere in the chat space. This led, in fact, to more confusion as humans seem to have a cognitive preference for temporal ordering of conversation turns.

It was also suggested that the presence of "phantom" adjacency pairs was a source of incoherence. That is, the lack of serial adjacency of actual conversation pairs may lead users to perceive that an interleaving post is related to a preceding post, when it is in fact not.

O'Neill and Martin also cited studies that provided evidence contradicting the interactional incoherence theory. One such study by Herring [15] suggested that the features of chat (e.g.,
loose inter-turn connectedness and overlapping exchanges) alleged to attribute to the problem may in fact produce positive benefits, such as the ability for users to participate in multiple simultaneous conversations within a single discussion. This is something that is much more difficult to do in spoken conversation. A unique feature of chat that allows this to occur is its persistence, i.e., the previous conversations stay on the screen, or can be easily scrolled to, so that they are available for reference.

Other chat features noted in research cited by O'Neill and Martin were that delays in response were not treated as noticeably absent as would be the case in spoken conversation. Also, in order to increase referent/message coherency, posters frequently post rapidly, using short utterances and splitting longer messages into smaller ones. Posters also make structural decisions, conscious or otherwise, to enable their audience's understanding of their message even in the event of interleaving. Mentions (which O’Neill and Martin refer to as "naming") and repetition are two common techniques used in this regard. Another feature noted was that it was rare for participants to use one turn to answer more than one previous turn - multiple response turns were preferred.

In their paper, O'Neill and Martin explain that "[m]ultiple threads can consist of parallel chats with different participants in each thread or participants may be involved in two threads simultaneously." Indeed, there is technical upper bound on the number of threads in which a user may participate; however, there may be very real limits on cognition and performance as thread participation increases. This is an interesting cognitive science question in its own right, but it is outside the scope of our objectives for this paper

O'Neill and Martin, in their own study, analyzed chat that was recorded during a a series of online business seminars. The participating audience was small (6 to 11 users), but were geographically dispersed in such locations as the UK, Russia, and Canada. The participants were professional business people, both acquainted and unacquainted, with varying levels of technical ability. The sessions analyzed were in the range of 60 to 90 minutes.

In their observations, O'Neill and Martin noted that the persistence aspect played a key role in multiple thread management. Even though chat scrolled out of the visible portion of the screen after a period of time, this did not prevent users from referencing these posts. According to their findings, "[p]articipants' entries during these events show that they do use this feature (for example, in [one event] one participant answered a much earlier query to him well after it would have been visible without scrolling.)" O'Neill and Martin also observed that
most chat entries are easily associated with the thread to which they contribute because of the observable contextual relations. That is, the contributions in a thread are sequentially related to one another in an accountable way (i.e., the relations are observable and reportable) even where their serial relations have been disrupted by intervening comments from different threads [14].

This statement suggests that indeed there are tangible features (observable contextual relations) that link related posts together. If true, these features might prove useful in building a model for machine learning.

O'Neill and Martin do not suggest that misunderstandings never occur in chat, but note that the turn-taking system anticipates this and makes allowances for the misunderstanding or confusion to be corrected in the following turn. As in the previous studies performed by other researchers, O'Neill and Martin also observed the use of mentions in chat to forestall possible confusion when the situation warranted. They noted that since conversation works "on the basis of economy," the explicit use of other users' names in the conversation performs as a "failsafe to ensure more conversational effort is not required in order to identify the desired recipient"[14].

Recent research closely aligned with the goals of our study is that of Elsner and Charniak in [16]. Their study presented a method for disentangling conversations from Internet Relay Chat (IRC) using a graph theoretic approach and maximum entropy classification. Elsner and Charniak define disentanglement as "the clustering task of dividing a transcript into a set of distinct conversations." The specific classification task is to decide, for each pair of posts in a given chat session, if the posts belong to the same conversation.

Figure 2.4 depicts the thread extraction task using one thread for purposes of illustration. In this case, the thread in question is a conversation regarding where a person lives in South Africa. The posts comprising this conversation are intermingled with other topics within the chat stream and, in fact, the participants in this thread may be simultaneously involved in other non-related conversations. What distinguishes this as a separate conversation is the dialog interaction between posts, the relative stability of participants, and the stability of the topic. Note however that these are not hard and fast rules: in chat, just as in spoken conversation, participants may enter and leave and the topics may shift or change altogether over time. The key factor is that when these events occur in a conversation thread, they typically do so with a noticeable transition phase rather than abruptly. For example, when new participants enter a conversation,

Figure 2.4: Illustration of conversation extraction task. Multiple conversations in a session are interleaved. The goal in extraction is to select only those posts that belong to a given conversation thread.
they will typically greet the existing particpants, who in turn will return the greeting. Likewise, departures are marked by farewells. Topic change is often a response to some stimulus in the conversation or will be explicitly marked by a partipant (e.g., By the way ... or I hate to change the subject, but ...).

Nigam et al. were among the first to explore using maximum entropy techniques for text classification in [17]. In this study, the goal was to compare the performance of maximum entropy classification against other supervised learning techniques, particularly naïve Bayes. This initial examination revealed that maximum entropy in some cases performed significantly better than naïve Bayes, but in other cases it performed worse. The study did, however, serve to show that maximum entropy can be effective in text classification and pointed out several areas in which the technique can be improved.

Nigam et al. explain that the concept behind maxium entropy is simply "that one should prefer the most uniform models that also satisfy any given constraints" [17]. To illustrate this concept the following example was offered:
[C]onsider a four-way text classification task where we are told only that on average 40% of the documents with the word "professor" in them are in the faculty class. Intuitively, when given a document with "professor" in it, we would say it has a 40% chance of being a faculty document, and a 20% chance for each of the other three classes. If a document does not have "professor" we would guess the uniform class distribution, 25% each. This model is exactly the maximum entropy model that conforms to our known constraint [17].

The Elsner and Charniak maximum entropy classifier employs three different categories of features:

- Chat-specific. These features include time gap between posts, the speaker, and mentions.
- Discourse. Includes cue words (e.g., "hello" to denote greeting), questions (marked by a question mark), and long posts (greater than 10 words).
- Content. Repeat (i) (words shared between two posts with unigram probability i, bucketed logarithmically), Technical (two posts use of technical jargon).

In order to provide a meaningful measure of the performance of a classification model, we must compare it to human performance on the same task. Therefore, it is important that we determine the level of agreement of multiple annotators on the same data. To evaluate inter-annotator agreement, as well as the performance of their maximum entropy classification model, Elsner and Charniak employed three different sets of evaluation methods:

- One-to-one accuracy - global accuracy that measured the total percentage overlap (see Figure 2.5)
- Local agreement - the percentage of agreements within some context k, where k is number of preceding utterances (see Figure 2.6)
- Many-to-one - comparative measure of detail in annotation; maps each conversation of source annotation to the single conversation in the target annotation with which it has greatest overlap, then counts total percentage of overlap.

The one-to-one accuracy and local agreement methods are evaluation methods are illustrated in Figures 2.5, 2.6.

Figure 2.5: One-to-one annotation metric (from [18]).

2.4 INFORMATION RETRIEVAL

Once conversation threads are extracted from a chat session, we might treat these threads as distinct documents within a document space. The task then becomes one of search, i.e., how to retrieve the conversations ("documents") in which we are interested. This is a well-studied field and many excellent methods exist for enabling seach. The following is a brief description of one of the more popular approaches.

2.4.1 Vector Space Model

Our research makes extensive use of the vector space model—one of the most frequently used techniques in information retrieval systems. This model, described by Salton in [19], represents documents and queries as vectors of features. Often, these features are the terms (e.g., n-grams) that occur within the document collection, with the individual value of each feature representing the occurrence or non-occurrence of the term within the document that it represents. If there

Local Agreement Metric

Annotator 1

Annotator 2

Figure 2.6: Local agreement metric (from [18]).
are N terms in a document collection, then each feature vector would correspondingly contain N dimensions.

In its simplest form, the feature value may use a binary value to indicate the existence of a term. A slightly more sophisticated model may incorporate the frequency of a term, under the presumption that the more often a term is used in a document, the greater the importance of that term to the document. This often has the unfortunate side effect of lending too much weight to common terms that may occur with a high degree of frequency throughout the entire collection, so schemes such as term frequency-inverse document frequency (TF-IDF) are used to discount these high frequency terms. Jurafsky and Martin [20] show a common formula for TF-IDF as

$$
w_{i, j}=t f_{i, j} \times \log \left(\frac{N}{n_{i}}\right),
$$

where the weight of a term i in the document vector for j is the product of its frequency, $t f$, in j and the log of its inverse document frequency in the collection, with n_{i} representing the number of documents in the collection that contain term i and N representing the total number of documents in the collection.

Our methodology makes use of this approach with the modification that, instead of documents, we are considering individual posts in a chat stream. Therefore, we utilize the frequency of a term in a post, discounted by the log of its inverse frequency across all posts in that stream.

Term frequency is but one of several term weighting schemes used. Other popular weightings include binary, logarithmic, and augmented normalized term frequency.

Finding similarity documents in a collection then becomes a matter of comparing vectors representing the documents and returning those that are "closer" in document space. Since the magnitude difference (due to relative term frequency) between vectors of documents with similar content could place the vectors further apart, the lengths of the vectors are typically normalized and proximity is based on cosine similarity as follows:

$$
\operatorname{sim}\left(d_{1}, d_{2}\right)=\frac{\vec{V}\left(d_{1}\right) \cdot \vec{V}\left(d_{2}\right)}{\left\|\vec{V}\left(d_{1}\right)\right\|\left\|\vec{V}\left(d_{2}\right)\right\|}
$$

The numerator represents the dot product, or cosine similarity, of the vectors representing documents d_{1} and d_{2}. The denominator is the product of the Euclidean lengths of the vectors, which serves to normalize the magnitudes.

Finding similarity between a query and a document in a collection is accomplished in like manner by performing comparisons between document vectors and a vector comprising the terms of the query.

2.4.2 Vector Space Model Usage

It is significant to note that we use the vector space model in two separate areas in our research:

1) TF-IDF is used in the time-distance penalization experiments detailed in Chapters 3 and 4 in order to established a weighting between posts, and 2) once the conversation threads are extracted, the vector space model is used to retrieve conversations of interest based on a search query. In fact, any search methodology may be used to accomplish the second task, and though the performance of the information retrieval task was not a part of this study, it is likely that are algorithms which may be particularly suitable for this.

2.5 TEXT CLASSIFICATION

As mentioned previously in the discussion of maximum entropy classification, text classification is the task of categorizing units of text (e.g., words, sentences, paragraphs, or documents) based upon features of the text itself. In additon to maximum entropy, there are several classification techniques that are know to perform text classification well. This section contains a
description of three popular techniques. We include this discussion due to our choice to evaluate one of these - Latent Dirichlet Allocation (LDA) - in conjunction with the Elsner and Charniak maximum entropy classifier to improve the chat feature set.

In particular, one of the weaker features employed by the Elsner and Charniak classifier is the absence or presence of "technical" words in a post. This is based on the assumption that technical words are descriptive of a topic of interest. In the case of the Elsner and Charniak study, their corpus consisted entirely of chat from a single Linux-related session. Therefore, the assumption was that these technical words were descriptive of Linux-related topics. To generate the technical words list, Elsner and Charniak used a Linux technical manual and filtered out all words that were contained in a general news corpus (with news items pre-dating the Linux operating system), leaving only Linux-specific technical terms behind. This approach, while effective on the particular session used in the study, has several limitations:

1. Finding good source texts upon which to use the word-differential approach many be problematic.
2. This approach may not work with chat session that are not technical in nature.
3. Topics may in fact include non-technical words.
4. It does not account for multiple topics within the context of a global topic-oriented session.
5. It is difficult to update the model with additional information.

To address these limitations, we evaluated the use of LDA in constructing our feature set. The technical details and the results of this are included in Chapters 3 and 4.

2.5.1 Probabilistic Latent Semantic Indexing

Probabilistic Latent Semantic Indexing (pLSI; also known as Probabilistic Latent Semantic Analysis or pLSA) is a generative model for text classification proposed by Hofmann [21] that models in each word in a document as a sample from a mixture model. In pLSI each word is generated from a single topic; different words in the document may be generated from different documents. The output of this model is a list of mixing proportions for the different mixture components.

The pLSI model (see Figure 2.9(c)), proposes that a document label d and a word w_{n} are conditionally independent given an unobserved topic z :

$$
p\left(d, w_{n}\right)=p(d) \sum_{z} p\left(w_{n} \mid z\right) p(z \mid d)
$$

Although this model captures the possibility that a document may contain multiple topics given that $p(z \mid d)$ forms the mixture weights of the topics for a particular document d, a drawback to this approach is that d is simply an index into documents in the training set. This being the case, there is no natural way to assign a probability to a previously unseen document. Latent Dirichlet Allocation, which we now turn to, is an attempt to overcome this limitation.

2.5.2 Latent Dirichlet Allocation

Blei et al. describe Latent Dirichlet allocation (LDA) as "a generative probabilistic model for collections of discrete data such as text corpora" [22]. It is an approach similar to, and often compared with, the pLSI model. LDA is a three-level Bayesian model that assumes that items in a collection, such as documents when used in the context of text corpora, are formed as a finite mixture over a set of latent topics. These topics themselves are selected from an infinite distribution of topic probabilities. These topic probabilities predicted by the model form an explicit representation of a document. Although LDA is quite suited toward working with text, it has also proved beneficial in other patterned-data domains such as imaging and bioinformatics.

LDA aims to address some of the shortcomings of the pLSI model. Chiefly, as Blei et al. explain is that pLSI "provides no probabilistic model at the level of documents" [22]. The output of the pLSI model is a list of numbers that represent the mixing proportions for documents, but there is no generative model provided for the numbers. Two additional problems noted with this approach were that the model input parameters grow linearly with the size of the corpus, and there is not clear method for assigning probabilities to documents not contained within the training set.

The LDA model leverages the Dirichlet process introduced by [23], the formal definition of which is as follows:

Let Θ be a measurable space, with H a probability measure on the space, and let α be a positive real number. A Dirichlet Process is the distribution of a random probability measure G over Θ
such that, for any finite partition $\left(A_{1}, \ldots, A_{r}\right)$ of Ω, the random vector $\left(G\left(A_{1}\right), \ldots, G\left(A_{r}\right)\right)$ is distributed as a finite-dimensional Dirichlet distribution:

$$
\left(G\left(A_{1}\right), \ldots, G\left(A_{r}\right)\right) \sim \operatorname{Dir}\left(\alpha H\left(A_{1}\right), \alpha H\left(A_{r}\right)\right)
$$

As explained by Blei et al., the following generative process for each document w in a corpus D is assumed by LDA:

1. Choose word length $N \sim \operatorname{Poisson}(\xi)$.
2. Choose topic mixture $\theta \sim \operatorname{Dir}(\alpha)$.
3. For each of the N words w_{n} :
(a) Choose a topic $Z_{n} \sim \operatorname{Multinomial}(\theta)$.
(b) Choose a word w_{n} from $p\left(w_{n} \mid z_{n}, \beta\right)$, a multinomial conditioned on the topic z_{n}.

Some simplifying assumptions are in effect for this model: 1) the dimensionality k of the Dirichlet distribution is assumed known and fixed, and 2) the word probabilites are parameterized by a $k \times V$ matrix β, where $\beta_{i j}=p\left(w^{j}=1 \mid z^{i}=1\right)$, which is initially treated as a fixed quantity to be estimated. The Poisson distribution over document length is also an assumption and one that is not critical to the Dirichlet process, therefore a more realistic distribution for document length may be substitued as desired.

A k-dimensional Dirichlet random variable θ can take values in the $(k-1)$-simplex and has the following probability density on the simplex:

$$
p(\theta \mid \alpha)=\frac{\Gamma\left(\sum_{i=1}^{k} \alpha_{i}\right)}{\prod_{i=1}^{k} \Gamma\left(\alpha_{i}\right)} \theta_{1}^{\alpha_{1}-1} \ldots \theta_{k}^{\alpha_{k}-1}
$$

where the parameter α is a k-vector with components $\alpha_{i}>0$, and where $\Gamma(x)$ is the Gamma function. Figure 2.7 illustrates an example probability density on a two-dimensional simplex for distributions over three words and four topics.

Given the parameters α and β, the joint distribution of a topic mixture θ, a set of N topics \mathbf{z}, and a set of N words w is given by:

Figure 2.7: Example density on unigram distributions $p(w \mid \theta, \beta)$ under LDA for three words and four topics. The triangle shown on the plane is the two-dimensional simplex that represents all possible distributions over three words. (From [22].)

$$
p(\theta, \mathbf{z}, \mathbf{w} \mid \alpha, \beta)=p(\theta \mid \alpha) \prod_{n=1}^{N} p\left(z_{n} \mid \theta\right) p\left(w_{n} \mid z_{n}, \beta\right)
$$

where $p\left(z_{n} \mid \theta\right)$ is simply θ_{i} for the unique i such that $z_{n}^{i}=1$. Integrating over θ and summing over z gives us the marginal distribution of a document:

$$
p(\mathbf{w} \mid \alpha, \beta)=\int p(\theta \mid \alpha)\left(\prod_{n=1}^{N} \sum_{z_{n}} p\left(z_{n} \mid \theta\right) p\left(w_{n} \mid z_{n}, \beta\right)\right) d \theta
$$

The last step is to take the product of the marginal probabilities of the single documents, giving us the probability of a corpus:

$$
p(\mathbf{D} \mid \alpha, \beta)=\prod_{d=1}^{M} \int p\left(\theta_{d} \mid \alpha\right)\left(\prod_{n=1}^{N_{d}} \sum_{z_{d n}} p\left(z_{d n} \mid \theta_{d}\right) p\left(w_{d n} \mid z_{d n}, \beta\right)\right) d \theta_{d}
$$

As Blei et al. note, the parameters α and β are corpus-level parameters and are assumed to be sampled once in the process of generating a corpus. The θ_{d} variables are document-level and are sampled once per document. The $z_{d n}$ and $w_{d n}$ variables are at the word-level and are sampled once for each word in the document [22]. A graphical depiction of the LDA model illustrating these relationships is shown in Figure 2.8.

Figure 2.8: The boxes in the illustration of the LDA model indicate "plates" representing replicants. The outer plate is the replicant for documents, while the inner plates is the repeated choice of topics and words within the document. (From [22].)

The relationship of LDA with simpler latent variable models for text is described by Blei et al. [22]. Figure 2.9 shows a comparison of three different probabilistic models of discrete data: unigram, mixture of unigrams, and the pLSI/aspect model. Note the difference between these and the LDA model shown in Figure 2.8.

In the unigram model, illustrated in Figure 2.9(a), the words of every document are drawn independently from a multinomial distribution:

$$
p(\mathbf{w})=\prod_{n=1}^{N} p\left(w_{n}\right) .
$$

The mixture of unigrams model (Figure 2.9(b) is generated by augmenting the unigram model with a discrete random topic variable z. Documents are generated in this model by first selecting a topic z and generating N words independently from the conditional polynomial $p(w \mid z)$. The document probability is:

$$
p(\mathbf{w})=\sum_{z} \prod_{n=1}^{N} p\left(w_{n} \mid z\right)
$$

According to Blei et al. [22], the mixture of unigrams model makes the assumption that each document represents exactly one topic. LDA, in contrast, allows documents to exhibit multiple topics to different degrees through the addition of one additional parameter. In the mixture of unigrams model, there are $k-1$ parameters associated with $p(z)$; whereas in LDA $p(\theta \mid \alpha)$ takes k parameters.

As discussed in the previous section, and provided here again for reference, the pLSI model assumes conditional independence of a document label d and a word w_{n}, given an unobserved topic z :

$$
p\left(d, w_{n}\right)=p(d) \sum_{z} p\left(w_{n} \mid z\right) p(z \mid d)
$$

(a) unigram

(b) mixture of unigrams

(c) pLSI/aspect model

Figure 2.9: Graphical model representation of different models of discrete data. (From [22].)

Figure 2.10: This figure shows the topic simplex for three topics embedded in the word simplex for three words. The corners of the word simplex represent the distribution where each word has a probablity of one. The topic simplex, likewise, has points that represent three different distributions over words that each correspond to a document (as a mixture of unigrams). In the pLSI model, an empirical distribution (denoted by the small x marks in this figure) is induced on the topic simplex. The LDA model places a smooth distribution (denoted by the contour lines) on the topic simplex. (From [22].)

In an evaluation of real-world performance, Blei et al. trained the LDA model on a subset of 16,000 documents from the TREC AP corpus. A 100-topic model was assumed and expectation maximization was used to find the Dirichlet and conditional multinomial parameters. Figure 2.11 illustrates some of the most probable words from several topics, which were then manually labeled with a representative tag. As can be seen, the LDA model is able to capture topical groupings that correspond to human intuition.

To evaluate generalization performance, Blei et al. compared LDA with the unigram, unigram mixture, and pLSI models. The models were trained on two text corpora containing unlabeled documents with the goal of achieving high likliehood on a held-out test set (90 percent training; 10 percent holdout). Perplexity, a measure often used in language modeling, was used as the metric for evaluation. Perplexity is monotonically decreasing in the liklihood of the test data and is algebraically equivalent to the inverse of the geometric mean per-word likliehood, with lower score indicating better performance. The formal definition of perplexity given a test set

"Arts"	"Budgets"	"Children"	"Education"
NEW	MILLION	CHILDREN	SCHOOL
FILM	TAX	WOMEN	STUDENTS
SHOW	PROGRAM	PEOPLE	SCHOOLS
MUSIC	BUDGET	CHILD	EDUCATION
MOVIE	BILLION	YEARS	TEACHERS
PLAY	FEDERAL	FAMILIES	HIGH
MUSICAL	YEAR	WORK	PUBLIC
BEST	SPENDING	PARENTS	TEACHER
ACTOR	NEW	SAYS	BENNETT
FIRST	STATE	FAMILY	MANIGAT
YORK	PLAN	WELFARE	NAMPHY
OPERA	MONEY	MEN	STATE
THEATER	PROGRAMS	PERCENT	PRESIDENT
ACTRESS	GOVERNMENT	CARE	ELEMENTARY
LOVE	CONGRESS	LIFE	HAITI

The William Randolph Hearst Foundation will give $\$ 1.25$ million to Lincoln Center, Metropolitan Opera Co., New York Philharmonic and Juilliard School. "Our board felt that we had a real opportunity to make a mark on the future of the performing arts with these grants an act every bit as important as our traditional areas of support in health, medical research, education and the social services," Hearst Foundation President Randolph A. Hearst said Monday in announcing the grants. Lincoln Center's share will be $\$ 200,000$ for its new building, which will house young artists and provide new public facilities. The Metropolitan Opera Co. and New York Philharmonic will receive $\$ 400,000$ each. The Juilliard School, where music and the performing arts are taught, will get $\$ 250,000$. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual \$100,000 donation, too.

Figure 2.11: Example article from the Associated Press corpus (from [22]). The color coding indicates the topic category from which the word was putatively generated.
of M documents is:

$$
\operatorname{perplexity}\left(D_{\text {test }}\right)=\exp \left\{-\frac{\sum_{d=1}^{M} \log p\left(\mathbf{w}_{\mathbf{d}}\right)}{\sum_{d=1}^{M} N_{d}}\right\}
$$

The generalization performance of the four classification models is shown in Figure 2.12. The most important thing to note is effect that unseen documents have on the perplexity. An unseen document may best fit one of the components for the mixture models (mixture of unigrams or pLSI) but it will likely contain at least one word that did not occur in the training documents. These unseen words will, as a result, have a very small probability, causing the perplexity for the new document to increase dramatically. This is not the case for LDA, which consistently

Figure 2.12: Perplexity results on the Associated Press corpus for LDA, the unigram model, mixture of unigrams, and pLSI. (From [22].)
outperformed the other classification models.

2.5.3 Hierarchical Latent Dirichlet Allocation

Though not evaluated in this study, a refinement of LDA known as hierarchical LDA (hLDA), uses a statistical sampling technique known as the Chinese Restaurant Process (CRP) in conjunction with the LDA approach. The advantage offered by hLDA is that it performs well when the number of topics in the distribution are not known beforehand, or an estimation of the number of topics is not feasible.

Figure 2.13 illustrates the performance of hLDA against a text data set of 1717 NIPS extracts. This corpus contained 208,896 words and a vocubulary of 1600 terms. From this Blei et al. [24] used hLDA to estimate a three-level hierarchy. The first level of the hierarchy consists of function words captured by the model. Because these types of words are not usually useful in distinguishing text for classification, they are often manually removed from a corpus prior to the learning process. This step is unnecesary in hLDA, as the system was able to detect these words automatically. In the second level of the hierarchy are words assocated with the topic categories of neuroscience and machine learning. Finally, the third-level hierachy contains words associated with important subtopics in these categories.

Having completed this overview of chat and related natural language processing work, we will

Figure 2.13: Sample topic hierarchy estimated from 1717 abstracts from NIPS01 through NIPS12 using hLDA (from [24])
now turn to the technical details of our research.

CHAPTER 3: TECHNICAL APPROACH

3.1 DATA SETS

In our study, we used two primary data sets: 1) the original NPS Chat Corpus and 2) new sessions collected from IRC chat channels (which are being incorporated into the NPS Chat Corpus). A full description of both data sets is as follows:

3.1.1 NPS Chat Corpus

The NPS Chat Corpus, discussed in Chapter 2, was initially collected in 2006 by Lin [4]. Lin collected in excess of 475,000 chat posts by more than 3200 users from five different ageoriented rooms at (non-IRC) Internet chat site. The chat rooms were socially-oriented and not bound by specific topic, hence the discussions contained therein are diverse. This chat was subsequently POS and dialog act-tagged by Forsyth [5]. Currently 10,567 posts are tagged in this manner and are publicly available ${ }^{1}$ in XML format.

Although this corpus has no time-stamp information associated with constituent posts, the ordering of posts in each session is preserved.

3.1.2 Freenode IRC

We augmented the original NPS Chat Corpus with additional chat collected from the Freenode IRC server during late July 2008. The motivation for this was to replicate tactical military chat as closely as possible in an unclassified environment to permit more freedom for annotation, analysis, and broader dissemination. Figure 3.1 shows a sample of chat rooms available on the Freenode IRC server. Chat sessions were recorded using the open source pidgin ${ }^{2}$ client.

Collecting this chat provided us with two added advantages: 1) we were able to preserve time stamp information and 2) we were able to select topic-specific IRC channels. In all, over 504 minutes of chat from three separate channels were collected in this stage. Details of these chat sessions, including file name, number of non-system lines in file, and duration of each session in minutes, are show in Table 3.2. Channels were chosen based upon number of users and activity

[^1]```
 NO LOL | Pasting > 3 lines? Use http://paste.pocoo.org/
 | Tutorial: http://docs.python.org/tut/
 | FAQ: http://effbot.org/pyfaq/
 | New Programmer? Read
 http://www.greenteapress.com/thinkpython/
| #python.web #wsgi #python-fr #python.de #python-es
 #python.tw #python.pl #python-br
| IRSeekBot logs this channel publicly at
 http://www.irseek.com/
```

Table 3.1: \#python channel policy as set forth in topic banner. This channel has an explicit "NO LOL" policy in an attempt to curtail needless banter (noise) in channel. This policy is routinely "enforced" by channel participants.
level, global topic, and low "noise" content (e.g., the discussions tended to focus around the global topic of the chat room without excess social banter). The following is a description of each channel:

| Channel Name | Description |
| :--- | :--- |
| \#python | active channel devoted to Python programming, moderately high technical <br> level with question-answer conversation |
| \#\#physics | active channel with scientific (but not necessarily technical) conversation <br> with sustained discussion threads |
| \#\#iphone | active channel due to recent release of new Apple iPhone model); slightly <br> "noisier"; more opinion-based conversation. |

The low-noise aspect of the chosen channels can be attributed to three main factors: 1) the nature of the chat room global topic, 2) posted channel rules, and 3) enforcement by users. The "channel rules" refers to the text that is typically included in the topic banner for the chat room (set in IRC by issuing the /topic command)(see example in Table 3.1). This banner appears in room listings and is also displayed within the active chat channels. It often includes explicit rules for members to follow, typically to avoid a surfeit of off-topic banter. Users who break these rules risk sufferering criticism from other users and in the worst cases (and depending upon the level of moderation of the chat room by channel operators - those with elevated status in the room), may find themselves banned from the channel. As an example, in the course of one of the collected Python sessions, a participant used the 'lol' chat initialism in violation of the posted "NO LOL" policy. The user was chastised for this by the other chat participants, which induced a new conversation thread relating to the "NO LOL" policy.

| File | Non-system lines | Duration |
| :--- | :--- | :--- |
| iphone_07_17.txt | 251 | $3: 38: 13$ |
| iphone_07_18.txt | 585 | $5: 46: 12$ |
| iphone_07_19.txt | 748 | $45: 58: 07$ |
| iphone_07_21.txt | 591 | $13: 52: 38$ |
| iphone_07_22.txt | 844 | $13: 44: 07$ |
| iphone_07_23.txt | 241 | $11: 40: 41$ |
| iphone_07_24.txt | 831 | $15: 10: 51$ |
| iphone_07_25.txt | 603 | $12: 55: 42$ |
| iphone_07_26.txt | 392 | $11: 54: 56$ |
| iphone_07_27.txt | 335 | $9: 36: 27$ |
| iphone_07_28.txt | 242 | $9: 28: 40$ |
| iphone_07_29.txt | 331 | $7: 31: 53$ |
| iphone_07_31.txt | 110 | 6104 |
| Total |  | $10: 04: 55$ |
| physics_07_17.txt | 67 | $3: 23: 22$ |
| physics_07_18.txt | 99 | $5: 48: 11$ |
| physics_07_19.txt | 438 | $45: 56: 58$ |
| physics_07_21.txt | 702 | $13: 55: 22$ |
| physics_07_22.txt | 203 | $13: 35: 54$ |
| physics_07_23.txt | 137 | $11: 38: 22$ |
| physics_07_24.txt | 703 | $15: 04: 45$ |
| physics_07_25.txt | 750 | $13: 01: 19$ |
| physics_07_26.txt | 828 | $12: 00: 12$ |
| physics_07_28.txt | 487 | $9: 21: 59$ |
| physics_07_29.txt | 504 | $7: 40: 34$ |
| physics_07_31.txt | 120 | $5: 53: 28: 24$ |
| Total | 5038 | $45: 56: 14$ |
| python_07_17.txt | 323 |  |
| python_07_18.txt | 716 |  |
| python_07_19.txt | 736 |  |
|  | continued on following page... |  |


| File | Non-system lines | Duration |
| :--- | :--- | :--- |
| python_07_21.txt | 706 | $13: 55: 22$ |
| python_07_22.txt | 768 | $13: 46: 01$ |
| python_07_23.txt | 735 | $11: 39: 47$ |
| python_07_24.txt | 673 | $15: 10: 11$ |
| python_07_25.txt | 670 | $13: 02: 21$ |
| python_07_26.txt | 697 | $11: 58: 55$ |
| python_07_27.txt | 775 | $9: 41: 14$ |
| python_07_28.txt | 704 | $9: 32: 41$ |
| python_07_29.txt | 597 | $7: 42: 44$ |
| python_07_31.txt | 683 | $10: 05: 22$ |
| Total | 8783 | $172: 00: 08$ |
| Combined Total | 19925 | $504: 51: 54$ |

Table 3.2: Conversation thread annotated chat files from Freenode IRC server. Duration given in HH:MM:SS.

### 3.2 ANNOTATION

The IRC chat was hand-annotated by conversation thread by three annotators comprising one college undergraduate and two high school interns. All possessed a basic understanding of the Python programming language and have taken physics-based classes, giving them some degree of background knowledge of the global topic matter in the chat.

For the actual annotation task, the annotators used Elsner's Java-based annotation client ${ }^{3}$, which provides a graphical user interface that assists in the assignment of individual posts to conversation threads. The chat viewer interface is shown in Figure 3.2. Annotators are able to easily annotate new threads and associate posts with existing threads using a combination of keyboard shortcuts and dragging posts with the mouse. The entire chat session is shown in the left-hand pane. When a new post is annotated or when a previously-annotated post is selected, all posts marked as being in that thread are shown in the right-hand pane, thus providing an easy visual

[^2]

Figure 3.1: Freenode IRC server room list.
reference to the conversation.

The result of the annotation process is a text file comprising the text of each session, with each post prepended by an index corresponding to a conversation thread to which it belongs. These files are used directly in our maximum entropy classification process (see Section 3.4).

### 3.3 FIRST PHASE EXPERIMENTAL TECHNIQUES

As described in Wang et al. [25], we use a connectivity matrix to establish parent-child relationship between posts. Given our time-ordered sequence $P$ of chat posts, where $P=$ $\left\{p_{i} \mid\right.$ time $\left.{ }_{\text {start }} \leq i \leq t i m e_{\text {end }}\right\}$ in a chat session, we construct a directed graph by creating an edge from $p_{j}$ to all messages preceding it in time. The edge weights were derived from the cosine similarity of the word vectors of each post, which were constructed as described in Subsection 2.4.1. The initial graph is represented by the connectivity matrix $W$, where each element $w_{i, j}$ represents the weighted edge from $p_{i}$ to $p_{j}$ in the graph. The formal definition of the connectivity matrix is

$$
w_{i, j}=\left\{\begin{array}{ll}
\frac{\vec{p}_{i} \cdot \vec{p}_{j}}{\left\|\vec{p}_{i}\right\|\left\|\mid \vec{p}_{i}\right\|}, & \text { if } i>j \\
0, & \text { otherwise }
\end{array} .\right.
$$



Figure 3.2: Chat viewer interface showing highlighted threads.

We use the initial connectivity matrix as a basis for finding links between pairs of messages. In the first stage, only cosine similarity between the TF-IDF weights is used for comparison. In latter stages, we augment the term vector and, in the case of considering distance between posts, we penalize the TF-IDF appropriately. This stages are described in detail in this section.

Many text processing tasks begin by employing stemming and/or stop word removal as a first step. Stemming involves removing the suffix of a word in order to consider only its root (e.g., running becomes run, faded becomes fade, etc.). Stop word removal involves discarding noncontent bearing words such as function words (e.g., conjunctions, prepositions, articles, etc.) or high-frequency words that occur too often in the text to provide useful distinguishing features (note that function words themselves are typically high frequency, so often techniques such as removal of the top 50 most frequent words will often do a good job at removing the function words). We have intentionally chosen not to employ stemming or stop word removal at this stage of our experiments. There are two primary reasons for this: 1) chat posts are sparse and often an entire post may consist of what might be considered non-content bearing words under other contexts, so we wish to preserve this in the hope that even the non-content bearing words, or specific morphologies of words might tend to assist in grouping like content; and 2) follow-on techniques such as WordNet hypernym augmentation (discussed in Subsection 3.3.2)

|  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $w_{21}$ |  |  |  |  |  |  |
| $\ldots$ | $\ldots$ |  |  |  |  |  |
| $\ldots$ | $\ldots$ | $\ldots$ |  |  |  |  |
| $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |  |  |  |
| $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |  |  |
| $w_{i 1}$ | $\ldots$ | $\ldots$ | $\ldots$ | $\cdots$ | $w_{i j-1}$ |  |

Figure 3.3: Illustration of connectivity matrix. Value $w$ represents the weighted similarity of post $i$ with post $j$.
provide automatic stemming of words, so it is not necessary to do so when building our initial connectivity matrix.

An additional decision that we made was to preserve punctuation and other non-word tokens to observe the effect that these items have on post similarity. We also included system messages, such 'PART' (displayed when a user departs the chat session) and 'JOIN' (displayed when a user joins the chat session) notifications, to observe the thread detection performance on these "known" related messages.

### 3.3.1 Time-Distance Penalization

For time-distance penalization, we consider that the further post $j$ is from post $i$ in a chat session (i.e., the more posts that are interleaved between the two), the less likely the association between post $i$ and post $j$ in a particular topic thread.

We assign a simple penalization to our original weight as follows:

$$
w_{i, j}^{\prime}=w_{i, j}\left(\frac{1}{|i-j|}\right)
$$

where $w_{i, j}^{\prime}$ is our new time-distance penalized weighting factor for the edge between $i$ and $j$.

### 3.3.2 Hypernym Augmentation

The intuition behind hypernym augmentation is that posts relating to the same subject may not include identical terms, though they may in fact include terms that are in the same semantic category. The Princeton WordNet ${ }^{4}$ ontology includes hypernyms as one form of semantic relationship in its database.

A hypernym of a word is a word that is more generic than the given word. For example, 'canine' is more generic than 'dog,' thus 'canine' is a hypernym of 'dog.'

In our analysis, we consider each token in every post being evaluated. We augment the feature vector of the post with the next two levels of hypernyms of nouns and verbs found in the post. In deciding which hypernym path to follow, we chose the path from the first given sense as that is typically the most common usage of that word.

### 3.3.3 Nickname Augmentation

We are beginning to explore the relationship between the user and the topic thread. Our simplified initial model simply assigns the user nickname to the post feature vector. Thus, posts by the same user should be weighted more similarly to indicate the higher probability that they are part of the same conversation.

| TD\# | Description |
| :---: | :--- |
| 1 | TF-IDF only |
| 2 | TF-IDF + TDP |
| 3 | TF-IDF + HA |
| 4 | TF-IDF + TDP + HA |
| 5 | TF-IDF + HA + NA |
| 6 | TF-IDF + HA + NA + TDP |

Table 3.3: Thread detection techniques. Key: TF-IDF - term frequency-inverse document frequency, HA - hypernym augmentation, NA - nickname augmentation, TDP - time-distance penalization.

The initial phase of our experiments used the original NPS Chat Corpus. It was divided into six groups, with each group implementing the feature sets shown in Table 3.3.

[^3]
### 3.3.4 Thread Extraction

The extraction of a conversation thread was accomplished by the algorithm shown in Figure 3.4. Given a root post, the algorithm returns all subsequent messages deemed to be a part of that the thread, as well as other threads that may spawn from the original thread. Future work will improve upon this algorithm; in particular, to recover threads that may have a broken link (i.e., threads containing posts not having a similarity score above threshold) and to capture multiple parent conversations that may merge into a single thread.

```
post_queue = new queue
post_queue.add(root_post)
while post_queue not empty do
 get post from post_queue
 for each < i,j> tuple from connectivity matrix do
 if i= post and weight }\mp@subsup{i}{ij}{}>\mathrm{ threshold then
 post_queue.add(j)
 end if
 end for
end while
```

Figure 3.4: Thread extraction algorithm

### 3.4 SECOND PHASE EXPERIMENTAL TECHNIQUES

In the second phase of our experiments, we examined the effects of maximum entropy classification on the IRC data collected from Freenode (\#\#iphone, \#\#physics, and \#python sessions). For comparison purposes, we elected to use the same methodology and statistics as in the Elsner and Charniak study [16, ], although our feature construction approach differed slightly as shall be described.

This phase was conducted in two stages: one using the standard maximum entropy classifier and the second using the maximum entropy classifier augmented with LDA.

### 3.4.1 Maximum Entropy Classification

Elsner and Charniak's classification technique employs the MEGA Model Optimization Package maximum entropy classifier ${ }^{5}$ written by Daumé. A full description of the classifier and its usage can be found on the website, along with a unpublished paper describing the algorithms

[^4]employed.
The Elsner and Charniak experimental setup provides a Python "wrapper" around the Daumé classifier; several utility programs are used to construct the feature set and associated files. Training and testing are both done in a single step by passing the annotated training and testing chat sessions to the classifier as inputs (see Figure 3.5 for a graphical depiction of the classification process). Due to current limitations of the software, only one training file and one test file per classification cycle are permissable. To compensate for this, we used model averaging across the corpus using two different testing criteria, the details of which now follow.


Figure 3.5: Maximum entropy classifier
We first trained the model on chat files from each annotator and tested against files annotated by different annotators for the same session; we then trained the model on chat files by each annotator from different sessions and tested against files annotated by the same annotator for different sessions. The primary objective in this two-pronged approach was to observe if a single-annotator training model performed comparably to human annotation by different annotators.

The actual steps taken in processing each file were as follows:

1. Unigram statistics were compiled for each file and the 50 most frequent words (stop
words) were removed.
2. A technical word list was compiled for each set of sessions by utilizing a source text related to the chat session topic matter and filtering out all words that were found in the Wall Street Journal texts of the Penn Treebank ${ }^{6}$. The intuition behind this step is that vocabulary related to the chosen chat session global topics would be unlikely to appear in the Wall Street Journal files as the articles predate (in the case of \#\#iphone and \#python) or are more general (in the case of \#\#physics) than the technical material discussed in the chat session.
3. The model was constructed and evaluated by the maximum entropy classifier, once for each training-test pair.
4. Models were then evaluated using standard accuracy, precision, recall, and F-score values and were averaged across sessions for each of two testing criteria categories.

The following texts were used as source material for technical words for the sessions indicated:

| Session | Text |
| :--- | :--- |
| \#\#iphone | iPhone OS Programming Guide |
| \#\#physics | Newtonian Physics textbook |
| \# |  |
| \#python | Dive into Python ${ }^{9}$ |

The technical word list tended to contain interesting results. For example, in the sample Linux technical word list included with the classifier, words such as voip, chmod, inittab, and bashrc were listed, but so too were words such as thankyou and there's, as well as different forms of numbers, symbols, and URLs. It is clear that proper tokenization (and perhaps error correction) plays a key role in the success of this method, as do appropriate choices for the technical and non-technical source texts.

[^5]
### 3.4.2 Maximum Entropy Classification with LDA Augmentation

The second stage of our maximum entropy experiments used an identical procedure to that described in the previous section, but with one important change: instead of compiling a technical words list as in step 2 in that procedure, we utilized LDA classification in an attempt to find vocabulary words groupings in latent topic areas in the chat (see Figure 3.6). As the technical words approach is a shallow attempt to describe a topic feature inherent in that chat, it is our hope that LDA will: 1) provide a more descriptive vocabulary based on the actual latent topics in the chat, and 2) eliminate the reliance on a technical document source.

For LDA classification, we used Steyvers and Griffiths's Topic Modeling Toolbox, version 1.3.2 ${ }^{10}$ under GNU Octave 3.0.0. Some preprocessing of the text was required to generate vocabulary and document indices. Utility modules that handle the required data formatting are provided as part of the Topic Modeling Toolbox and are trivial to use.

Steyver and Griffith's implementation of the LDA model is a variant of standard LDA as described in Chapter 2. In particular, this model places a symmetric Dirichlet prior, $\beta$,on the topic mixture. This parameter "smoothes [sic] the word distribution in every topic and can be interpreted as the prior observation count on the number of times words are samples from a document before any word from the topic is observed" [26].

As parameter estimation is an important factor in the success of the LDA algorithm, we fixed the number of topics $T$ at 50 and used a known-good heuristic value of $50 / T$ for the $\alpha$ parameter and varied $\beta$ over $0.5^{n}, n=1, \ldots, 10$. We then manually selected the topic grouping set which seemed to give the best description of the chat session. The groups that seemed to provide the best vocubulary groupings were those with $\beta$ in the range of $0.5^{2} \ldots 0.5^{4}$. Values greater than $0.5^{6}$ resulted in fewer words returned due to the higher threshold for probability of occurrence.

[^6]

Figure 3.6: Maximum entropy classifier with LDA topic selection.

THIS PAGE INTENTIONALLY LEFT BLANK

## CHAPTER 4: RESULTS

In this chapter we present the results of our experiments as well as a discussion of their significance. We will begin first with observations regarding the chat corpus that we collected, along with insight gained from the annotation process. We will then discuss the results of the timedistance penalization experiments, followed by a a review of the performance of maximumentropy classification and the effect of Latent Dirichlet Allocation on the classification process.

### 4.1 ANNOTATOR OBSERVATIONS

During the course of the annotation work, the annotators were encouraged to take notes and compile general observations regarding their findings. The following are some of those observations:

- Chat participants occasionally make standalone comments (typically with humorous intentions) that are either orthogonal to ongoing topics or during a lull in the conversation. This may motivate several turns of off-topic discussion or it may go unanswered. It some cases it appears that the motivation may be an attempt to end an "uncomfortable silence."
- Posts that contain only emoticons tend to mark a single conversation.
- "Real" names are easier to keep track of during annotation than arbitrary user IDs.
- Attention words such as hey often mark the beginning of a schism or new conversation.
- Mentions were helpful in determining conversation threads, but some users tended to use them more than others. (Usage is user dependent.)
- Tacit knowledge of subject matter is often helpful in manual conversation disentanglement.
- Some questions only get partial answers or get no answer at all. In this case, the questioner will often repeat or rephrase the question. They will also use a follow up, such as anyone?.
- Multiple CIs may be an indicator of that a conversation is ending (the topic has "played out" and the participants are using CIs as "filler" material.)
- A conversation thread that has started to taper off may be revived by a new question or by a joke, both of which have the tendency of prolonging a conversation for several more turns.
- Chat room participants can often be divided into two categories: persistent cliques and transitory participants. Persistent cliques include participants who maintain a longer presence in a room and are usually involved in many conversation threads. Transitory participants tend to be more goal-oriented in their conversation and often join a chat room to ask a specific question, then leave upon receiving an answer. Persistent clique members are often characterized by being familiar with one another and having a more relaxed conversational style than transitory participants. As Figure 4.1 indicates, there is a correspondence between number of posts and number of conversations in which users are involved: those who post more are more likely to be involved in multiple conversations.


Figure 4.1: Utterances (posts) per speaker versus number of conversation threads in which speakers are engaged.

### 4.2 INTER-ANNOTATOR AGREEMENT

As discussed in Chapter 2, establishing inter-annotator agreement is an important factor in evaluating the performance of a classification model, since this establishes an upper bound on what can be expected from machine performance.

Summary results of the manual conversation thread annotation for the three chat rooms are show in Table 4.3 (see Appendix E for full annotation results).

| Metric | Mean | Min | Max |
| :--- | ---: | ---: | ---: |
| 1-to-1 | $\mathbf{0 . 7 6 3 0 1}$ | 0.72527 | 0.81600 |
| loc3 | $\mathbf{0 . 9 0 6 9 9}$ | 0.88925 | 0.92403 |
| M-to-1 (entropy) | $\mathbf{0 . 9 2 2 3 2}$ | 0.88502 | 0.95511 |
| Avg. Conv. Length | 16.83257 | 13.76255 | 19.35210 |
| Avg. Conv. Density | 1.23136 | 1.12836 | 1.34867 |
| \# Threads | 28.56667 | 24.70000 | 33.20000 |
| Entropy | 3.53903 | 3.23833 | 3.90011 |
| Table 4.1: Summary annotation metrics for \#\#iphone chat sessions. |  |  |  |
| Metric | Mean | Min | Max |
| 1-to-1 | $\mathbf{0 . 8 1 6 5 2}$ | 0.78891 | 0.85053 |
| loc3 | $\mathbf{0 . 9 3 1 2 4}$ | 0.91452 | 0.95219 |
| M-to-1 (entropy) | $\mathbf{0 . 9 4 2 6 3}$ | 0.91145 | 0.97014 |
| Avg. Conv. Length | 24.32272 | 18.52808 | 31.25278 |
| Avg. Conv. Density | 1.13588 | 1.05863 | 1.22026 |
| \# Threads | 14.76667 | 11.80000 | 17.70000 |
| Entropy | 2.50986 | 2.32122 | 2.67413 |

Table 4.2: Summary annotation metrics for \#\#physics chat sessions.

| Metric | Mean | Min | Max |
| :--- | ---: | ---: | ---: |
| 1-to-1 | $\mathbf{0 . 7 4 3 5 9}$ | 0.69245 | 0.80493 |
| loc3 | $\mathbf{0 . 8 7 3 3 0}$ | 0.85220 | 0.89522 |
| M-to-1 (entropy) | $\mathbf{0 . 8 7 6 4 7}$ | 0.84806 | 0.90293 |
| Avg. Conv. Length | 15.32323 | 13.76390 | 16.93643 |
| Avg. Conv. Density | 1.86632 | 1.73753 | 2.00879 |
| \# Threads | 44.63333 | 40.40000 | 48.90000 |
| Entropy | 4.39527 | 4.19973 | 4.61509 |

Table 4.3: Summary annotation metrics for \#python chat sessions.

As Elsner and Charniak [16] showed, and our inter-annotator agreement scores confirm, achieving consensus in conversation thread disentanglement can be a difficult task, even for human annotators. Each set of annotations by a particular annotator is a result of that individual's own theory of how the conversation mechanisms are being employed in that context. Even when involved in a conversation, human beings constantly use various cues - verbal and visual in the case of face-to-face, spoken conversation; textual and timing in the case of chat - that may not be evident in retrospect to a third party. Additionally, as described by Sacks et al. [10], humans regularly employ repair mechanisms during the course of a conversation to quickly repair
any turn-taking errors or misunderstandings. These facilities, of course, are not available to the annotator, though they may benefit from the chat participants' repair mechanisms should they recognize them as such.

For the annotation accomplished in this study, we can see that the lowest average score was for the \#python chat session. We hypothesize that the reason for this is the highly technical nature of the discourse that, in many cases, required a higher level of tacit knowledge to follow the conversation. Code snippets and technical jargon were quite frequently shared between users; without having specific knowledge of the nature of the topics discussed, it presented a challenge to those trying to discern the flow of the conversation and to which thread each participant belonged. The \#\#physics sessions presented less of a challenge to our annotators as the conversations were generally more free-flowing and distinct. When new topics were introduced, they were often accompanied by enough context to allow the annotators to more easily follow the conversation.

### 4.3 TIME-DISTANCE PENALIZATION RESULTS

In this section, the evaluation approach used to study time distance penalization is presented first and a discussion of the results follows.

### 4.3.1 Evaluation

Standard precision, recall, and F-score measurement were used for evaluation of the results of the experiment. Results were hand-scored by examining the predicted message thread and marking each predicted post link as to whether or not it was an actual link (i.e., should have been included in the thread). A balanced F-score was used in these experiments. A weighted F-score might be preferred to weight precision over recall or vice versa, depending on actual application. As an example, a proposed application of topic detection would be to ensure compliance with security policy by sanitizing the session of topic threads that contain disallowed information. In this case, we would prefer to weight recall more highly, as it is more critical that we retrieve all the inappropriate conversation than it is that we be precise.

The measurements used for each are defined as follows:

$$
\text { Precision }=\frac{T P}{T P+F P}
$$

$$
\begin{gathered}
\text { Recall }=\frac{T P}{T P+F N} \\
\text { F-score }=\frac{2(\text { Precision } \times \text { Recall })}{\text { Precision }+ \text { Recall }}
\end{gathered}
$$

$T P=\#$ of posts correctly scored as links within a thread
$F P=\#$ of posts incorrectly scored as links within a thread
$F N=$ \# of posts incorrectly not scored as links within a thread

### 4.3.2 Results

Figure 4.2 shows a comparison of our six thread detection schemes against a selected thread of interest. Note that the scale has been adjusted on the charts to better capture the threshold range. For the time-distance penalization charts, no posts were retrieved above a threshold of 0.2 , so the chart is truncated at that value. A maximum likelihood estimate F-score was used as a baseline for comparison. The best performing detectors, with an F-score of 0.6667 , were the ones that employed time-distance penalization together with TF-IDF, or with TF-IDF in combination with the other techniques. Against this particular thread, neither hypernym nor nickname augmentation made a significant difference in the detection results. Against two other threads tested we saw similar results, with F-scores for the TDP detectors consistently higher than those of the other detectors. More evaluation is needed across a more diverse data set to determine the consistency of this performance.

In Figure 4.3, we can see the effect that the time-distance penalization has on thread association. Subfigure 4.3(a) shows message posts with no time distance penalization. The two dense groupings are system messages-'PART' and 'JOIN' notifications-that do not belong to any chat conversation, thus they group only with themselves. In Subfigure 4.3(b), we observe that the time-distance penalization has the effect of "pulling apart" these strongly-linked messages since they occur further apart in the chat stream.

The effect on an actual conversation can be observed by noting the cluster in the upper right of Subfigure 4.3(a) surrounding post 104. This cluster represents "greeting" messages within the chat session (e.g. posts containing "hello,""hi," etc.). All such messages within the test block


Figure 4.2: Comparison of thread detection techniques across threshold values for selected thread of interest.
were linked in the same cluster, regardless of when they occurred within the session. In Subfigure 4.3(b), we can see that the cluster is smaller, with some links- $34 \rightarrow 74$ and $130 \rightarrow 173-$ removed from the initial grouping. This occurred due to those posts being part of a separate conversation, thus separated temporally from the others.

Our first-phase experiments quite clearly show the value of using time-distance as a feature in conversation thread extraction. In this set of experiments, combined with TF-IDF, it outper-


Figure 4.3: Effect of time-distance penalization on chat post association.
formed other methods of thread classification, including hypernym augmentation and nickname augmentation.

An analysis of where the message thread prediction failed in these experiments shows several important results. One is the importance of tacit knowledge in a conversation. For example, one thread that we evaluated was a discussion of someone living in South Africa. When asked where the person lived, they responded "kwa zulu natal." Without tacit knowledge that KwaZulu Natal is a province of South Africa, it is not likely that this response would be automatically associated with the conversation thread based on the message content alone. There are several possible approaches to address this problem: 1) increase probability that the posts are associated because they occur within a certain timeframe, 2) increase probability that the posts are associated because they occur between two chat participants that we have already determined are involved in a conversation, or 3) augment our vocabulary with semantic information that includes, in this example, geographical data. In fact, an examination of WordNet 3.0 shows that South Africa and KwaZulu-Natal have a meronymy relationship: South Africa HAS MEMBER KwaZulu-Natal. This suggests that supplementing our feature vector meronymy information in addition to hypernymy information might yield better results. A problem with this approach is that the meronymy information in WordNet is sparse. As an example, the sense car is relatively well-populated with meronymy information and contains 29 HAS PART relationships, includ-
ing air bag, gasoline engine, rear window, etc., but it does not contain steering wheel or clutch, nor any of the other thousands of parts that comprise an automobile. The use of domain specific ontologies or automatic ontology building tools may help overcome this problem.

The example of South Africa also serves to highlight another shortfall in this approach. Our current method does not take collocations-word groupings-into account. Therefore, South Africa is seen as two separate tokens: South and Africa, so our algorithm would not search the South Africa taxonomy. There currently exists many excellent algorithms for collocation detection which may be a useful addition to our code.

The relatively simplistic method of increasing semantic content through hypernym augmentation yielded almost no gain in performance of our thread detector on any of the three threads tested. It is not evident that this methodology offers any advantages over other similarity scoring techniques such as Leacock-Chodorow or Resnik. Future experiments should employ one or more of these measures and evaluate the performance compared with hypernym augmentation.

The important detail learned from the first-phase experiments is that the time-distance penalization scheme, even in this relatively simple implementation, yields good results. Therefore, when building more advanced statistical models, the time-distance between posts is a factor that should not be overlooked in feature set construction.

### 4.4 MAXIMUM ENTROPY CLASSIFICATION RESULTS

In this section we provide overall and summary scores for the maximum entropy model and, for comparison, maximum entropy plus LDA scores (summary only). Full evaluation metrics for both models are provided in Appendix F and Appendix G. Final result accuracy is calculated using Elsner and Charniak's many-to-one entropy evaluation metric described in Chapter 2 and precision, recall, and F-score are as defined in the previous section.

### 4.4.1 Maximum Entropy Model Results

The results of using the maximum entropy classifier are shown in Tables 4.4, 4.5, 4.6, 4.7, 4.8, and 4.9. Summary results for all sessions are shown in Table 4.11. The average accuracy and F-score results were all in the same general range for all three chat topics, with the \#physics chat sessions scoring slightly higher (in the 92 percent range). This correlates with the higher inter-annotator agreement scores that we saw for these files; we assess that this is due to the more conversational nature of the \#physics chat with fewer technical "snippets," which made
the conversation threads easy to follow (thus leading to higher agreement).
Another item to note is, although the average accuracy and F-scores for the two different testing criteria (same annotator, different session and same session, different annotator), in all cases same session, different annotator scored slightly higher. This suggests a large degree in variety between feature sets session-to-session. Future work needs to be done to assess the relative session-to-session performance using different feature sets.

The most important finding of this experiment was that the maximum entropy classification scores approach those of human annotators, as shown in Table 4.10.

|  | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| Min | 0.6819 | 0.6928 | 0.7804 | 0.7995 |
| Max | 0.9854 | 0.9875 | 1.0000 | 0.9927 |
| Avg | 0.8405 | 0.8618 | 0.9693 | 0.9093 |
| Std Dev | 0.0851 | 0.0864 | 0.0456 | 0.0522 |

Table 4.4: Classification results of same-annotator training and testing (different sessions) of \#\#iphone chat.

|  | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| Min | 0.7019 | 0.7098 | 0.8715 | 0.8156 |
| Max | 0.9869 | 0.9869 | 1.0000 | 0.9934 |
| Avg | 0.8575 | 0.8707 | 0.9736 | 0.9178 |
| Std Dev | 0.0842 | 0.0792 | 0.0302 | 0.0530 |

Table 4.5: Classification results of same-session training and testing (different annotators) of \#\#iphone chat.

|  | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| Min | 0.6409 | 0.6515 | 0.7452 | 0.7722 |
| Max | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Avg | 0.9202 | 0.9322 | 0.9852 | 0.9556 |
| Std Dev | 0.0881 | 0.0840 | 0.0370 | 0.0532 |

Table 4.6: Classification results of same-annotator training and testing (different sessions) of \#\#physics chat.

|  | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| Min | 0.6600 | 0.6576 | 0.7451 | 0.7933 |
| Max | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Avg | 0.9259 | 0.9371 | 0.9833 | 0.9577 |
| Std Dev | 0.0864 | 0.0775 | 0.0481 | 0.0544 |

Table 4.7: Classification results of same-session training and testing (different annotators) of \#\#physics chat.

|  | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| Min | 0.6109 | 0.5505 | 0.5064 | 0.6516 |
| Max | 0.8110 | 0.9433 | 0.9332 | 0.8278 |
| Avg | 0.7377 | 0.7794 | 0.7911 | 0.7780 |
| Std Dev | 0.0343 | 0.0742 | 0.0835 | 0.0331 |

Table 4.8: Classification results of same-annotator training and testing (different sessions) of \#python chat.

|  | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| Min | 0.7045 | 0.6764 | 0.6621 | 0.7266 |
| Max | 0.8101 | 0.8718 | 0.9316 | 0.8368 |
| Avg | 0.7583 | 0.7952 | 0.8011 | 0.7944 |
| Std Dev | 0.0297 | 0.0459 | 0.0717 | 0.0264 |

Table 4.9: Classification results of same-session training and testing (different annotators) of \#python chat.

|  | Model Accuracy <br> (Same Annot.) | Model Accuracy <br> (Same Session) | Human Accuracy |
| :--- | :--- | :--- | :--- |
| \#\#iphone | 0.8405 | 0.8575 | 0.9223 |
| \#\#physics | 0.9202 | 0.9259 | 0.9426 |
| \#python | 0.7377 | 0.7583 | 0.8765 |

Table 4.10: Maximum entropy model versus human annotation accuracy.


Figure 4.4: Comparison of classification results across all sessions using maximum entropy classifier.

| Max-Ent Model |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| All Sessions, Same Annot Diff Day |  |  |  |  |
| Accuracy | Precision | Recall | F-score |  |
| Min | 0.6109 | 0.5505 | 0.5064 | 0.6516 |
| Max | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Avg | 0.8328 | 0.8578 | 0.9152 | 0.8810 |
| Std Dev | 0.0692 | 0.0815 | 0.0554 | 0.0461 |


|  | All Sessions, All Same Day Diff Annot |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | Accuracy | Precision | Recall | F-score |
| Min | 0.6600 | 0.6576 | 0.6621 | 0.7266 |
| Max | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Avg | 0.8473 | 0.8677 | 0.9193 | 0.8900 |
| Std Dev | 0.0668 | 0.0675 | 0.0500 | 0.0446 |

Table 4.11: Classification results of same-session training and testing (different annotators) across all sessions using maximum entropy classification.

| Max-Ent + LDA Model |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| All Sessions, Same Annot Diff Day |  |  |  |  |
| Accuracy | Precision | Recall | F-score |  |
| Min | 0.6076 | 0.5481 | 0.5231 | 0.6602 |
| Max | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Avg | 0.8314 | 0.8622 | 0.9135 | 0.8801 |
| Std Dev | 0.0696 | 0.0815 | 0.0589 | 0.0465 |


|  | All Sessions, | Same Day Diff Annot |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | Accuracy | Precision | Recall | F-score |
| Min | 0.6609 | 0.6582 | 0.6558 | 0.7267 |
| Max | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Avg | 0.8471 | 0.8675 | 0.9195 | 0.8900 |
| Std Dev | 0.0665 | 0.0673 | 0.0504 | 0.0444 |

Table 4.12: Classification results of same-session training and testing (different annotators) across all sessions using maximum entropy classification with LDA topic detection.

### 4.4.2 Maximum Entropy with LDA Augmentation Results

LDA augmentation of the maximum entropy classifier did not result in a significant difference in accuracy, precision, recall, or F-score metrics over the maximum entropy classifier alone. Note that scores across all sessions (as shown Figure 4.5) are virtually identical to the scores for the non-LDA classification (Figure 4.4). The explanation for this may be that the other features in the feature set outweigh the contribution of the technical words feature. More work should be done to assess the relative contribution of features to the model. Nonetheless, the fact that using LDA did not result in a significant decrease to the model's performance, combined with its lack of a requirement to provide technical and non-technical source texts, may still make it a promising alternative. Additionally, LDA was beneficial in its own right in order to illustrate and get a sense of the latent topics in the chat. LDA may be useful even in its own right for the auditing of chat files for sensitive material or for data mining purposes.

### 4.4.3 Maximum Entropy Classification Summary

Maximum entropy classification proved to be an excellent technique for conversation thread classification, performing on par with human annotators. As our annotation has shown, conversation thread extraction is a difficult task even for human annotators, and the decision of whether a given pair of threads belong in the same conversation class is highly subjective. As


Figure 4.5: Comparison of classification results across all sessions using maximum entropy classifier with LDA.
in the Elsner and Charniak study, we have observed that annotators tend to be either "chunkers" or "splitters" - they have a predisposed proclivity toward grouping posts as conversations or separating them. Thus, it would be difficult to argue that much greater performance may be expected from maximum entropy classification, as it is already performing at the level of human annotators. Any further gain in improvement would likely be in tuning toward a single annotator's preferences, but this would be at the expense of a general model.

Perhaps because of the aforementioned maximum entropy performance, we did not see a notable change in accuracy by admitting LDA topic detection to our model. We do not believe that this invalidates the approach; rather, we believe that the relative performance of the model with and without LDA is more due to the higher performance of other features (e.g., mentions and timedistance). Further studies should be conducted in order to confirm this theory and to quantify the relative contribution of these feature sets.

LDA does show remarkable promise in automatically extracting topic clusters. This could be useful in a broad range of applications, such as data mining or providing an automated auditing capability for chat logs. This method should be preferred to simple "clean/dirty word" lists, as it will capture a word within the context of a broader topic. Thus even words which appear benign in other contexts may become suspicious when appearing in a certain topic category.

An area where the use of LDA may be improved is in parameter estimation. As we have shown in this study, the use of previously determined $\alpha, \beta$ and $\theta$ parameters provides a good starting point for the application of the LDA algorithm. We elected to iterate over several $\beta$ values that were likely to yield good results based on previous work in the field. A useful endeavor for future studies would involve techniques for better estimation of these LDA parameters. Additionally, the hLDA model should be investigated for possible use due to its ability to estimate the number of topics in the mixture without requiring a fixed parameter.

## CHAPTER 5: <br> CONCLUSIONS AND FUTURE WORK

In conclusion, our research shows that we can successfully perform automated topic detection and conversation extraction across many domains. Although we have achieved significant results, we are merely at the beginning stages of exploring the potential of statistical natural language processing techniques as it applies to chat and other forms of computer-mediated communications. As this work highlights, there are many possible applications, particularly in the realm of datamining and security.

To summarize our key findings, we showed the following:

- Conversation thread extraction is a difficult task for humans, as demonstrated by our inter-annotator agreement scores.
- The temporal distance between posts plays an important role in their classification. There is potential to improve the contribution of this feature by building more descriptive statistical models of the distribution of posts over time.
- Tacit knowledge is important to the discovery of semantic relationships which may influence the classification decision (implying a need for domain-specific ontologies).
- More research should be conducted into hypernym augmentation techniques using tools such as WordNet or other ontological databases.
- Maximum entropy is extremely effective technique for conversation thread classification.
- Latent Dirichlet Allocation can successfully find latent topics in chat, but more work needs to be done to fine tune the parameters to suit the domain.
- Although we collected many hours of chat data for this study, we believe that an even larger corpus with a wider variety of topics would be beneficial for further LDA study. To this end, we encourage further contributions of chat to this corpus.
- Continued exploration of feature set construction should be conducted. Natural language, hence chat, is a remarkably rich and diverse medium. We have only scratched the surface of its characteristics in this study. Future work should investigate incorporating work
such as Forsyth's part-of-speech and dialog-act tagging methodologies to enable more effective feature sets.

The aim of this work was to lay a solid foundation for future research into text classification of chat and the show the potential of advanced statistical techniques such as Latent Dirichlet Allocation and others to increase the value of text analysis tools to the warfighter. Our goals are to quickly get information to those who need it and present it in a manner that is useful, while denying it from those who do not. We believe this research moves us closer to achieving this end.

## APPENDIX A: ACRONYMS AND ABBREVIATIONS

BPNN Back Propagation Neural Network

C2 Command and Control

C3 Command, Control, and Communication

C4I Command, Control, Communication, Computers, and Intelligence

CENTCOM United States Central Command

CI Chat Initialism

CRP Chinese Restaurant Process

CMC Computer-mediated Communication

DA Dialogue Act

GENSER General Service (related to communications)

HA Hypernym Augmentation

HMM Hidden Markov Model

HLDA Hierarchical Latent Dirichlet Allocation

IM Instant Messaging

IORNOC Indian Ocean Regional Network Operations Center

| IRC | Internet Relay Chat |
| :---: | :---: |
| JTF | Joint Task Force |
| LDA | Latent Dirichlet Allocation |
| LSA | Latent Semantic Analysis |
| LSI | Latent Semantic Indexing |
| NA | Nickname Augmentation |
| NLP | Natural Language Processing |
| NORTHCOM | United States Northern Command |
| pLSI | Probabilistic Latent Semantic Indexing |
| POS | Part of Speech |
| PRNOC | Pacific Regional Network Operations Center |
| SI | Special Intelligence |
| SIT | Schism Inducing Turn |
| SVM | Support Vector Machines |
| TDP | Time-distance Penalization |
| XML | Extensible Markup Language |

## APPENDIX B: GLOSSARY

The following is a list of potentially unfamiliar terms found in the text of the thesis. They are provided here for reference.

| affiliation | the process by which a speaker or speakers attach them- <br> selves to a conversation |
| :--- | :--- |
| aside | comment that is produced to be marginal to the ongoing <br> conversation; like toss-outs, they are topic-relevant and do <br> not strongly implicate a response |
| bigram | a lexical unit comprising two words |
| chat room |  |
| pants, usually centered around a global topic or theme initialism | abbreviations that are characteristic of computer-mediated <br> communication, such as LOL (laughing out loud), BRB (be <br> right back), etc. |
| disentanglement | the act of extracting conversation threads from a chat dialog |
| emoticon | a portmanteau of the words "emotion" and "icon"; a sym- <br> bol, usually in ASCII text, that is meant to convey the emo- <br> tional disposition of the writer; often used in reaction to <br> another user's message |
| global topic | a new conversation |
| flom overall theme of a chat room (e.g., Python program- |  |
| ming, physics, etc.) |  |

mention
$n$-gram
nickname
persistent clique
post
schism
session
toss-out
a chat participant that enters a chat room for a short duration, usually in order to ask a question or get specific information
a lexical unit comprising three words
turn-taking
unigram
user
the process of determining which participant holds the floor in a conversation
a lexical unit comprising a single word
a participant in a chat session; may have one or more associated nicknames

THIS PAGE INTENTIONALLY LEFT BLANK

## APPENDIX C: CHAT ABBREVIATIONS AND INITIALISMS

The following are the 50 most common chat acronyms and abbreviations with their meanings as listed by the NetLingo website[27].

| 2moro | Tomorrow |
| :--- | :--- |
| 2nite | Tonight |
| BRB | Be Right Back |
| BTW | By The Way |
| B4N | Bye For Now |
| BCNU | Be Seeing You |
| BFF | Best Friends Forever |
| CYA | Cover Your Ass |
| DBEYR | Don't Believe Everything You Read |
| DILLIGAS | Do I Look Like I Give A Sh** |
| FUD | Fear, Uncertainty, and Disinformation |
| FWIW | For What It's Worth |
| ILY | Great |


| IMHO | In My Humble Opinion |
| :---: | :---: |
| IRL | In Real Life |
| ISO | In Search Of |
| J/K | Just Kidding |
| L8R | Later |
| LMAO | Laughing My Ass Off |
| LOL | Laughing Out Loud -or- Lots Of Love |
| LYLAS | Love You Like A Sister |
| MHOTY | My Hat's Off To You |
| NIMBY | Not In My Back Yard |
| NP | No Problem |
| NUB | it stands for a new person |
| OIC | Oh, I See |
| OMG | Oh My God |
| OT | Off Topic |
| POV | Point Of View |
| RBTL | Read Between The Lines |


| ROTFLMAO | Rolling On The Floor Laughing My Ass Off |
| :---: | :---: |
| RT | Real Time |
| RTM | Read The Manual |
| RTFM | Read The $\mathrm{F}^{* *}$ king Manual |
| SH | Sh** Happens |
| SITD | Still In The Dark |
| SOL | Sh** Out of Luck |
| STBY | Sucks To Be You |
| STFU | Shut The F**k Up |
| SWAK | Sealed With A Kiss |
| TFH | Thread From Hell |
| THX | Thanks |
| TLC | Tender Loving Care |
| TMI | Too Much Information |
| TTYL | Talk To You Later |
| TYVM | Thank You Very Much |
| VBG | Very Big Grin |


| WEG | Wicked Evil Grin |
| :--- | :--- |
| WTF | What The $\mathrm{F}^{* *} \mathrm{k}$ |
| WYWH | Wish You Were Here |
| XOXO | Hugs and Kisses |

# APPENDIX D: COMMONLY ENCOUNTERED CHAT EMOTICONS 

The following is a list of emoticons commonly encountered in text-based chat. From: Netlingo [27].

| @>--;-- | A rose | \%-6 | All Mixed Up |
| :---: | :---: | :---: | :---: |
| O:-) | Angel | 0*-) | Angel wink - female |
| 0; - ) | Angel wink - male | : - \{ | Angry |
| : - Z | Angry face | : - \{ \{ | Angry Very |
| >: - 1 | Annoyed | $\sim$ | Baby |
| $\sim \sim \ 8-0$ | Bad-Hair Day | $d:-1$ | Baseball |
| : - ) | Basic | : - \{ 0 | Basic Mustache |
| $: \sim$ - | Bawling | : -) \{ | Beard |
| (: - \{ | Beard - long | : $=$ | Beaver |
| \%-1 | Been up All Night | : - ) ${ }^{\wedge}$ | Big Boy |
| ( : - ) | Big Face | :-) $8<$ | Big Girl |
| ( ( H$) \mathrm{)}$ ) | Big Hug | : -X | Big Wet Kiss |
| $=\mid: 0\}$ | Bill Clinton smiley | ( $:-$ D | Blabber Mouth |
| ?-( | Black Eye | (: - | Blank Expression |
| \#-) | Blinking | :-] | Blockhead |
| : - ! | Bored | I: $($ | Botox smiley |
| : - \} X | Bow Tie-Wearing | $\langle \|:-)\rangle=$ | Boy Scout |
| \%-6 | Brain Dead | : - ( $=$ ) | Bucktoothed |
| : - E | Bucktoothed Vampire | : -F | Bucktoothed Vampire with One Tooth Missing |
| : - \# \| | Bushy Mustache | \} \| \{ | Butterfly |
| \}) i( $\{$ | Butterfly (prettier) | \} : - X | Cat |
| q: - ) | Catcher | $\mathrm{C}=$ : - ) | Chef |
| 8 | Chicken | ;-( | Chin up |
| *<<<<+ | Christmas Tree | :-.) | Cindy Crawford |


| * $<$ : 0 ) | Clown | :-8( | Condescending Stare |
| :---: | :---: | :---: | :---: |
| : -S | Confused | \%) | Confused |
| : - \{ | Count Dracula | H-) | Cross-Eyed |
| : '- ( | Crying | : * | Crying softly |
| \&: - ) | Curly Hair | :-@! | Cursing |
| O-) | Cyclops | >: -> | Devilish |
| : -e | Disappointed | \%-\} | Dizzy |
| :3-] | Dog | : -) | Double Chin |
| :*) | Drinking every night | : -B | Drooling out of Both Sides of Mouth |
| . $\ /$ | Duck | <:-1 | Dunce |
| : -6 | Eating Something Spicy | (: - - | Egghead |
| 5:-) | Elvis | : ") | Embarrased |
| : - \} | Embarrassed Smile | 01-) | Enjoying the Sun |
| >: ) | Evil | >-) | Evil Grin |
| $\mathrm{G}\left(-^{\prime} .{ }^{\prime} \mathrm{G}\right)$ | Fighting Kid | 1:-0 | FlatTop Loudmouth |
| $=:-H$ | Football player | : -W | Forked Tongue |
| $:^{\wedge}$ \{ $=$ | Frank Zappa | \% * : $^{\text {- }}$ ) | Freaking Out |
| /:-) | Frenchman with a beret | 8) | Frog |
| : - | Frowning | ) : - ( | Frowning Smiley with Hair |
| :-1 | Frustrated | $=:-$ ) | Funny Hair |
| * * | Fuzzy | *: * $\}$ | Fuzzy With a Mustache |
| ~ $:-($ | Getting Rained On | 8*) | Glasses and a Half Mustache |
| \{:-) | Hair Parted in the Middle | $\}:-1$ | Hair Parted in the Middle Sticking up on Sides |
| :-\}) | Handlebar Mustache | \%-) | Happy Drunk |
| :-' | Has a Dimple | : \% ) \% | Has Acne |
| : - \# | Has Braces | : (\#) | Has Braces variation |
| :- '\| | Have a Cold | \|: - ) | Heavy Eyebrows |
| /;-) | Heavy Eyebrows - Slanted | $1^{\wedge}$ | Hepcat |
| (_8 (1) | Homer Simpson | (_8^(1) | Homer Simpson |
| ( $\left.\sim^{\sim \sim} \sim\right)$ | Hot Ass Walking Away | $*^{\wedge}{ }^{\wedge}$ * | Huge Dazzling Grin |
| :0 | Hungry | $\bigcirc[-<]$ : | I am a skater or I like to skate |
| \%* $\}$ | Inebriated | ( 1 ): - ) = II = | Jewish Blonde |


| ?:^ [] | Jim Carrey | 18 \{ | John Lennon |
| :---: | :---: | :---: | :---: |
| @ : - \} | Just Back From Hairdresser | : -T | Keeping a Straight Face |
| : -x | Kiss | : - | Kiss on the cheek |
| >^, , $<$ | Kitty Cat | \& | Kitty cleaning a hind paw |
| $\sim_{*}$ = | Kitty running away from you | : p | Kitty with tongue hanging out |
| @ (*0*) @ | Koala | : -D | Laughing |
| \%OD | Laughing like crazy | (-: | Left Hand |
| ?-: | Lefthanded tongue touching nose | >; -> | Lewd Remark |
| : -9 | Licking Lips | ;-' | Like, Duh |
| : -x | Lips are Sealed | 8:-) | Little Girl |
| \%-) | Long Bangs | \% $+\{$ | Lost a Fight |
| 1-1 | Lost Contact Lenses | X- 1 | Mad |
| ;-( | Mad Look | \&-1 | Makes Me Cry |
| : - (*) | Makes Me Sick | : -S | Makes No Sense |
| @@@@: - ) | Marge Simpson | @ - - ) | Meditating Smiley |
| \#: - ) | Messy Hair | $8(:-)$ | Mickey Mouse |
| :) | Midget | ~-( | Mohawk |
| : - \{ | Mustache | : - $\{$ ) $=$ | Mustache \& Goatee |
| : -3 | Mustache (Handlebar Type) | $\{:-\{ )\}$ | Mustache and Beard |
| : - \# | My Lips Are Sealed | (-) | Needs Haircut |
| ) : - ( | Nordic | :/) | Not Amused |
| 8-0 | Omigod | : = ) | Orangutan |
| : - ? | Pensive | : ${ }^{\text {) }}$ | Personality |
| 3:] | Pet Dog | : 8) | Pig |
| :---) | Pinnochio | P-( | Pirate |
| 3: [ | Pitbull | :-< | Pointy Mustache |
| \}: ^\#) | Pointy Nosed | +<: - ) | Pope |
| : - t | Pouting | : - [ | Pouting variation |
| +:-) | Priest | ; ${ }^{\text {[ }}$ | Prizefighter |
| X: - ) | Propeller Head | ?-) | Proud of black eye |
| $=:-)$ | Punk | $=:-1$ | Punk Not Smiling |
| $\left\langle\left(-^{\prime} .{ }^{\prime}-\right)\right\rangle$ | Puppy dog | : -r | Rasberry |


| : -C | Real Unhappy | : - 1 | Really Bummed Out |
| :---: | :---: | :---: | :---: |
| :-) ) | Really Happy | ( ${ }^{\text {( }}$ | Robocop |
| [:] | Robot | @ \} ;-- | Rose |
| 3:*> | Rudolph the red nose reindeer | : - | Sad |
| : 1 | Sad Turtle | : -d | Said with a smile |
| : -y | Said with a Smile variation | M: - | Saluting |
| *<1:-) | Santa Claus | : -> | Sarcastic |
| : -@ | Screaming | 8-) | Scuba Diver |
| ) 8-) | Scuba Diver with Hair | \$__\$ | Sees Money |
| : -i | Semi-Smile | , :-) | Shaved Left Eyebrow |
| 8-0 | Shocked | +-( | Shot Between the Eyes |
| : -V | Shouting | : 0 | Singing |
| $\sim$ : -P | Single Hair | :-1 | Skeptical |
| ':-1 | Skeptical again | : -7 | Skeptical variation |
| O-) | Smiley After Smoking | ) : - ) | Smiley with Hair |
| :-, | a Banana Smirk | ; ${ }^{\text {) }}$ | Smirking |
| : -i | Smoking a cig | :-? | Smoking a pipe |
| : -Q | Smoking while talking | $\sim \sim \sim \sim 8$ | Snake |
| : - $<1$ | Standing Firm | $=\%-0$ | Stared at Computer |
| \%-) | Staring at a Screen for | (8-\{) \} | Way Too Long Sunglasses, Mustache, Beard |
| :0 | 15 hours Surprised | ':-) | Sweating |
| , :- | Sweating on the Other Side | : -0 | Talkative |
| : -S | Talking Gibberish | \& - 1 | Tearful |
| $-(:)(0)=8$ | Teletubby | :-)--- | Thin as a Pin |
| \%-\ | Tired | : - ? | Tongue Sticking Out |
| :-\& | Tongue Tied | :-a | Tongue Touching Nose |
| *! \#*!^*\&:- | Total Head Case | \} (: - ( | Toupee Blowing in Wind |
| : -) ) ) | Triple Chin | $<:>==$ | Turkey |
| $\mathrm{x}:-1$ | Uncertain | =) : - ) | Uncle Sam |
| : - \ | Undecided | :-1 | Unfazed |
| \|: - ) | Unibrow | \| $:-$ \| | Unyielding |


| : - [ | Vampire | : - ) ) | Very Happy |
| :---: | :---: | :---: | :---: |
| \%') | Very Tired | ( $:-$ ( | Very Unhappy |
| : - < | Walrus | @ : - ) | Wavy Hair |
| \{ (:-) | Wearing a Toupee | [:-) | Wearing a Walkman |
| 8-) | Wearing Contacts | B-) | Wearing Glasses |
| : - \{ \} | Wearing Lipstick | ]-I | Wearing Sunglasses |
| \{:-) | Wears a Toupee | :-1 | Whatever |
| :-" | Whistling | $;^{\wedge}$ ? | Wigged Out |
| ' - ) | Winking | , -) | Winking Happy |
| ;-) | Winking variation | \#-) | Wiped out, partied all night |
| $8<-$ ) | Wizard | -=\#:-) \} | Wizard with Wand |
| :-) 8 : | Woman | : ${ }^{\text {) }}$ | Wondering |
| , - ${ }^{\text {r }}$ | Wry and Winking | : - 7 | Wry Face |
| 1-0 | Yawning | $1^{\wedge} 0$ | Yawning or Snoring variation |
| : - (0) | Yelling | = $8-0$ | Yikes |

THIS PAGE INTENTIONALLY LEFT BLANK

## APPENDIX E: <br> INTER-ANNOTATOR AGREEMENT RESULTS

The following are the full inter-annotator agreement results (three annotators) for three different chat rooms: \#\#iphone, \#\#physics, and \#python. Sessions were logged July 17-31, 2008.

## E. 1 \#\#iphone METRICS

| Session | Metric | Mean | Min | Max |
| :--- | :--- | :--- | :--- | :--- |
| 17-Jul | 1-to-1 | 0.84185 | 0.78832 | 0.91971 |
|  | loc3 | 0.92040 | 0.91045 | 0.93532 |
|  | M-to-1 (entropy) | 0.98054 | 0.95620 | 1.00000 |
|  | Avg. Conv. Length | 9.20024 | 6.52381 | 10.53846 |
|  | Avg. Conv. Density | 1.18735 | 1.02920 | 1.48905 |
|  | \# Threads | 15.66667 | 13.00000 | 21.00000 |
|  | Entropy | 2.87433 | 2.63738 | 3.28785 |
| 18-Jul | 1-to-1 | 0.65185 | 0.63419 | 0.68205 |
|  | loc3 | 0.88278 | 0.84765 | 0.90435 |
|  | M-to-1 (entropy) | 0.85698 | 0.78291 | 0.91111 |
|  | Avg. Conv. Length | 38.21429 | 27.85714 | 45.00000 |
|  | Avg. Conv. Density | 1.32764 | 1.10427 | 1.47692 |
|  | \# Threads | 16.00000 | 13.00000 | 21.00000 |
|  | Entropy | 2.43688 | 2.10202 | 3.00043 |
| 1-to-1 | 0.75936 | 0.69920 | 0.86096 |  |
|  | loc3 | 0.93408 | 0.92438 | 0.94676 |
|  | M-to-1 (entropy) | 0.95766 | 0.93182 | 0.97594 |
|  | Avg. Conv. Length | 28.14725 | 22.00000 | 32.52174 |
|  | Avg. Conv. Density | 1.20900 | 1.06551 | 1.45856 |
|  | \# Threads | 27.33333 | 23.00000 | 34.00000 |
|  | Entropy | 3.09611 | 2.75017 | 3.78377 |
|  | 1-to-1 | 0.74676 | 0.72081 | 0.79865 |
|  | loc3 | 0.92819 | 0.92177 | 0.93311 |
|  | M-to-1 (entropy) | 0.94360 | 0.89002 | 0.98646 |
|  |  |  |  | Continued... |
|  |  |  |  |  |


| Session | Metric | Mean | Min | Max |
| :---: | :---: | :---: | :---: | :---: |
|  | Avg. Conv. Length | 15.15713 | 13.43182 | 16.88571 |
|  | Avg. Conv. Density | 1.22617 | 1.13367 | 1.28088 |
|  | \# Threads | 39.33333 | 35.00000 | 44.00000 |
|  | Entropy | 3.91289 | 3.33856 | 4.31152 |
| 22-Jul | 1-to-1 | 0.69586 | 0.69112 | 0.70414 |
|  | loc3 | 0.87332 | 0.86540 | 0.88638 |
|  | M-to-1 (entropy) | 0.87377 | 0.84970 | 0.89467 |
|  | Avg. Conv. Length | 20.76914 | 16.25000 | 26.40625 |
|  | Avg. Conv. Density | 1.31240 | 1.24763 | 1.40284 |
|  | \# Threads | 42.33333 | 32.00000 | 52.00000 |
|  | Entropy | 4.47508 | 4.11199 | 4.81126 |
| 23-Jul | 1-to-1 | 0.82711 | 0.78838 | 0.90041 |
|  | loc3 | 0.88702 | 0.86415 | 0.92157 |
|  | M-to-1 (entropy) | 0.92531 | 0.90041 | 0.95436 |
|  | Avg. Conv. Length | 7.74313 | 6.88571 | 8.31034 |
|  | Avg. Conv. Density | 1.22545 | 1.12033 | 1.33195 |
|  | \# Threads | 31.33333 | 29.00000 | 35.00000 |
|  | Entropy | 4.10224 | 3.96632 | 4.27904 |
| 24-Jul | 1-to-1 | 0.59928 | 0.52587 | 0.67870 |
|  | loc3 | 0.84326 | 0.80837 | 0.87681 |
|  | M-to-1 (entropy) | 0.82671 | 0.78580 | 0.86522 |
|  | Avg. Conv. Length | 16.55520 | 14.57895 | 18.46667 |
|  | Avg. Conv. Density | 1.35018 | 1.26233 | 1.40433 |
|  | \# Threads | 50.66667 | 45.00000 | 57.00000 |
|  | Entropy | 4.42245 | 3.99141 | 4.80779 |
| 28-Jul | 1-to-1 | 0.84986 | 0.82231 | 0.89669 |
|  | loc3 | 0.95723 | 0.94142 | 0.96932 |
|  | M-to-1 (entropy) | 0.93939 | 0.89256 | 0.98760 |
|  | Avg. Conv. Length | 12.83198 | 11.52381 | 14.23529 |
|  | Avg. Conv. Density | 1.08953 | 1.05785 | 1.12810 |
|  | \# Threads | 19.00000 | 17.00000 | 21.00000 |
|  | Entropy | 3.20827 | 3.02162 | 3.33637 |


| Session | Metric | Mean | Min | Max |
| :--- | :--- | :--- | :--- | :--- |
| 29-Jul | 1-to-1 | 0.80967 | 0.77341 | 0.84592 |
|  | loc3 | 0.96612 | 0.95528 | 0.97256 |
|  | M-to-1 (entropy) | 0.97382 | 0.95166 | 0.99396 |
|  | Avg. Conv. Length | 14.40948 | 13.79167 | 15.04545 |
|  | Avg. Conv. Density | 1.31621 | 1.26284 | 1.35045 |
|  | \# Threads | 23.00000 | 22.00000 | 24.00000 |
|  | Entropy | 3.11823 | 2.87153 | 3.47883 |
| 31-Jul | 1-to-1 | 0.84848 | 0.80909 | 0.87273 |
|  | loc3 | 0.87747 | 0.85358 | 0.89408 |
|  | M-to-1 (entropy) | 0.94545 | 0.90909 | 0.98182 |
|  | Avg. Conv. Length | 5.29791 | 4.78261 | 6.11111 |
|  | Avg. Conv. Density | 1.06970 | 1.00000 | 1.16364 |
|  | \# Threads | 21.00000 | 18.00000 | 23.00000 |
|  | Entropy | 3.74380 | 3.59235 | 3.90423 |
|  |  |  |  |  |
| Avg. All Sessions | 1-to-1 | 0.76301 | 0.72527 | 0.81600 |
|  | loc3 | 0.90699 | 0.88925 | 0.92403 |
|  | M-to-1 (entropy) | 0.92232 | 0.88502 | 0.95511 |
|  | Avg. Conv. Length | 16.83257 | 13.76255 | 19.35210 |
|  | Avg. Conv. Density | 1.23136 | 1.12836 | 1.34867 |
|  | \# Threads | 28.56667 | 24.70000 | 33.20000 |
|  | Entropy | 3.53903 | 3.23833 | 3.90011 |
|  |  |  |  |  |

## E. 2 \#\#physics METRICS

| Session | Metric | Mean | Min | Max |
| :--- | :--- | :--- | :--- | :--- |
| 17-Jul | 1-to-1 | 0.96020 | 0.94030 | 0.98507 |
|  | loc3 | 0.96181 | 0.94271 | 0.97917 |
|  | M-to-1 (entropy) | 1.00000 | 1.00000 | 1.00000 |
|  |  |  | Continued... |  |


| Session | Metric | Mean | Min | Max |
| :---: | :---: | :---: | :---: | :---: |
|  | Avg. Conv. Length | 23.07778 | 13.40000 | 33.50000 |
|  | Avg. Conv. Density | 1.00498 | 1.00000 | 1.01493 |
|  | \# Threads | 3.33333 | 2.00000 | 5.00000 |
|  | Entropy | 0.28726 | 0.11191 | 0.52639 |
| 18-Jul | 1-to-1 | 0.95286 | 0.92929 | 0.98990 |
|  | loc3 | 0.96528 | 0.94792 | 1.00000 |
|  | M-to-1 (entropy) | 1.00000 | 1.00000 | 1.00000 |
|  | Avg. Conv. Length | 12.35000 | 8.25000 | 19.80000 |
|  | Avg. Conv. Density | 1.00000 | 1.00000 | 1.00000 |
|  | \# Threads | 9.33333 | 5.00000 | 12.00000 |
|  | Entropy | 2.06927 | 1.91439 | 2.15681 |
| 19-Jul | 1-to-1 | 0.87367 | 0.85160 | 0.89269 |
|  | loc3 | 0.92797 | 0.92184 | 0.93487 |
|  | M-to-1 (entropy) | 0.95053 | 0.93151 | 0.96804 |
|  | Avg. Conv. Length | 17.50206 | 14.12903 | 20.85714 |
|  | Avg. Conv. Density | 1.09665 | 1.07078 | 1.13014 |
|  | \# Threads | 25.66667 | 21.00000 | 31.00000 |
|  | Entropy | 3.28143 | 3.16197 | 3.38866 |
| 21-Jul | 1-to-1 | 0.72840 | 0.69801 | 0.77778 |
|  | loc3 | 0.92402 | 0.90987 | 0.94611 |
|  | M-to-1 (entropy) | 0.95062 | 0.90741 | 0.97436 |
|  | Avg. Conv. Length | 35.75000 | 29.25000 | 39.00000 |
|  | Avg. Conv. Density | 1.39364 | 1.07407 | 1.83048 |
|  | \# Threads | 20.00000 | 18.00000 | 24.00000 |
|  | Entropy | 3.06059 | 2.77389 | 3.55838 |
| 22-Jul | 1-to-1 | 0.97044 | 0.95567 | 0.98030 |
|  | loc3 | 0.98667 | 0.98000 | 0.99000 |
|  | M-to-1 (entropy) | 1.00000 | 1.00000 | 1.00000 |
|  | Avg. Conv. Length | 16.99553 | 15.61538 | 18.45455 |
|  | Avg. Conv. Density | 1.00493 | 1.00493 | 1.00493 |
|  | \# Threads | 12.00000 | 11.00000 | 13.00000 |
|  | Entropy | 2.74950 | 2.66137 | 2.83381 |



| Session | Metric | Mean | Min | Max |
| :--- | :--- | :--- | :--- | :--- |
|  | Avg. Conv. Density | 1.14167 | 1.10833 | 1.18333 |
|  | \# Threads | 14.00000 | 12.00000 | 15.00000 |
|  | Entropy | 2.60400 | 2.45350 | 2.68235 |
| Avg. All Sessions |  |  |  |  |
|  | 1-to-1 | 0.81652 | 0.78891 | 0.85053 |
|  | loc3 | 0.93124 | 0.91452 | 0.95219 |
|  | M-to-1 (entropy) | 0.94263 | 0.91145 | 0.97014 |
|  | Avg. Conv. Length | 24.32272 | 18.52808 | 31.25278 |
|  | Avg. Conv. Density | 1.13588 | 1.05863 | 1.22026 |
|  | \# Threads | 14.76667 | 11.80000 | 17.70000 |
|  | Entropy | 2.50986 | 2.32122 | 2.67413 |

## E. 3 \#python METRICS

| Session | Metric | Mean | Min | Max |
| :--- | :--- | :--- | :--- | :--- |
| 17-Jul | 1-to-1 | 0.63364 | 0.52632 | 0.76471 |
|  | loc3 | 0.86042 | 0.80937 | 0.89271 |
|  | M-to-1 (entropy) | 0.79360 | 0.70588 | 0.85449 |
|  | Avg. Conv. Length | 13.93671 | 10.76667 | 17.00000 |
|  | Avg. Conv. Density | 1.78844 | 1.45201 | 2.20124 |
|  | \# Threads | 24.00000 | 19.00000 | 30.00000 |
|  | Entropy | 3.56414 | 3.51237 | 3.62109 |
| 18-Jul | 1-to-1 | 0.67831 | 0.62709 | 0.76257 |
|  | loc3 | 0.89995 | 0.86723 | 0.94109 |
|  | M-to-1 (entropy) | 0.87058 | 0.83939 | 0.90084 |
|  | Avg. Conv. Length | 18.01672 | 15.23404 | 20.45714 |
|  | Avg. Conv. Density | 2.03911 | 1.85335 | 1.95158 |
|  | \# Threads | 40.33333 | 35.00000 | 47.00000 |
|  |  |  | Continued... |  |


| Session | Metric | Mean | Min | Max |
| :---: | :---: | :---: | :---: | :---: |
|  | Entropy | 4.24396 | 4.00140 | 4.68757 |
| 19-Jul | 1-to-1 | 0.69656 | 0.62772 | 0.79891 |
|  | loc3 | 0.86054 | 0.85766 | 0.86221 |
|  | M-to-1 (entropy) | 0.85371 | 0.82473 | 0.90082 |
|  | Avg. Conv. Length | 14.30940 | 13.38182 | 15.65957 |
|  | Avg. Conv. Density | 1.89402 | 1.59103 | 2.34918 |
|  | \# Threads | 51.66667 | 47.00000 | 55.00000 |
|  | Entropy | 4.52339 | 4.24990 | 4.75857 |
| 21-Jul | 1-to-1 | 0.73560 | 0.69688 | 0.78470 |
|  | loc3 | 0.83657 | 0.81697 | 0.85633 |
|  | M-to-1 (entropy) | 0.87866 | 0.81303 | 0.93201 |
|  | Avg. Conv. Length | 18.27788 | 17.65000 | 19.08108 |
|  | Avg. Conv. Density | 1.67705 | 1.96034 | 1.44193 |
|  | \# Threads | 38.66667 | 37.00000 | 40.00000 |
|  | Entropy | 4.25823 | 4.14085 | 4.47135 |
| 22-Jul | 1-to-1 | 0.76693 | 0.71615 | 0.81250 |
|  | loc3 | 0.88874 | 0.86318 | 0.90240 |
|  | M-to-1 (entropy) | 0.90148 | 0.89583 | 0.90885 |
|  | Avg. Conv. Length | 16.89167 | 15.36000 | 17.86047 |
|  | Avg. Conv. Density | 2.21267 | 2.16276 | 2.27865 |
|  | \# Threads | 45.66667 | 43.00000 | 50.00000 |
|  | Entropy | 4.35211 | 4.13655 | 4.64556 |
| 23-Jul | 1-to-1 | 0.79864 | 0.76599 | 0.84218 |
|  | loc3 | 0.89921 | 0.88342 | 0.92441 |
|  | M-to-1 (entropy) | 0.87438 | 0.84490 | 0.89388 |
|  | Avg. Conv. Length | 18.30037 | 15.63830 | 20.41667 |
|  | Avg. Conv. Density | 1.86939 | 1.70068 | 2.11020 |
|  | \# Threads | 40.66667 | 36.00000 | 47.00000 |
|  | Entropy | 4.34544 | 4.26055 | 4.45993 |
| 24-Jul | 1-to-1 | 0.74492 | 0.72065 | 0.76226 |
|  | loc3 | 0.85605 | 0.84975 | 0.86418 |
|  | M-to-1 (entropy) | 0.84596 | 0.83655 | 0.85290 |
|  |  | Continued... |  |  |


| Session | Metric | Mean | Min | Max |
| :---: | :---: | :---: | :---: | :---: |
|  | Avg. Conv. Length | 10.42071 | 9.89706 | 10.68254 |
|  | Avg. Conv. Density | 2.06389 | 1.91679 | 2.34621 |
|  | \# Threads | 64.66667 | 63.00000 | 68.00000 |
|  | Entropy | 4.99559 | 4.83134 | 5.09911 |
| 28-Jul | 1-to-1 | 0.75805 | 0.71733 | 0.81676 |
|  | loc3 | 0.85640 | 0.82882 | 0.90823 |
|  | M-to-1 (entropy) | 0.91288 | 0.89773 | 0.93182 |
|  | Avg. Conv. Length | 14.18003 | 12.13793 | 18.05128 |
|  | Avg. Conv. Density | 1.68371 | 1.50142 | 1.79688 |
|  | \# Threads | 51.33333 | 39.00000 | 58.00000 |
|  | Entropy | 4.77518 | 4.34111 | 5.03267 |
| 29-Jul | 1-to-1 | 0.78671 | 0.72697 | 0.81742 |
|  | loc3 | 0.88814 | 0.87205 | 0.90067 |
|  | M-to-1 (entropy) | 0.89838 | 0.89280 | 0.90787 |
|  | Avg. Conv. Length | 15.18013 | 14.92500 | 15.30769 |
|  | Avg. Conv. Density | 1.78727 | 1.71859 | 1.83752 |
|  | \# Threads | 39.33333 | 39.00000 | 40.00000 |
|  | Entropy | 3.98693 | 3.75408 | 4.19800 |
| 31-Jul | 1-to-1 | 0.83651 | 0.79941 | 0.88726 |
|  | loc3 | 0.88693 | 0.87353 | 0.90000 |
|  | M-to-1 (entropy) | 0.93509 | 0.92972 | 0.94583 |
|  | Avg. Conv. Length | 13.71866 | 12.64815 | 14.84783 |
|  | Avg. Conv. Density | 1.64763 | 1.51830 | 1.77452 |
|  | \# Threads | 50.00000 | 46.00000 | 54.00000 |
|  | Entropy | 4.90776 | 4.76914 | 5.17706 |
| Avg. All Sessions | 1-to-1 | 0.74359 | 0.69245 | 0.80493 |
|  | loc3 | 0.87330 | 0.85220 | 0.89522 |
|  | M-to-1 (entropy) | 0.87647 | 0.84806 | 0.90293 |
|  | Avg. Conv. Length | 15.32323 | 13.76390 | 16.93643 |
|  | Avg. Conv. Density | 1.86632 | 1.73753 | 2.00879 |
|  | \# Threads | 44.63333 | 40.40000 | 48.90000 |
|  |  |  |  | tinued. . |


| Session | Metric | Mean | Min | Max |
| :--- | :--- | :--- | :--- | :--- |
|  | Entropy | 4.39527 | 4.19973 | 4.61509 |

THIS PAGE INTENTIONALLY LEFT BLANK

# APPENDIX F: MAXIMUM ENTROPY CLASSIFICATION RESULTS 

The following are the full results from maximum entropy classification over \#\#iphone, \#\#physics, and \#python chat sessions. Two approaches were used: Same Annotator, Different Session the training set was from a different session, but was annotated by the same person as the test set; and Same Session, Different Annotator - the training set was the same session as the test set, but was annotated by a different person. Results from both approaches are provided. The filename keys are as follows:
Same Annotator, Different Session: [chat topic]_[month]_[day of training session]-[annotator number]-[day of test session]-[annotator number]
Same Session, Different Annotator: [chat topic]_[month]_[day]-[training annotator]-[test annotator]

## F. 1 \#\#iphone, SAME ANNOTATOR, DIFFERENT SESSION

| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| iphone_07_17-1-18-1 | 0.8915 | 0.8915 | 1.0000 | 0.9426 |
| iphone_07_17-1-19-1 | 0.9126 | 0.9126 | 1.0000 | 0.9543 |
| iphone_07_17-1-21-1 | 0.8300 | 0.8300 | 1.0000 | 0.9071 |
| iphone_07_17-1-22-1 | 0.8055 | 0.8055 | 1.0000 | 0.8923 |
| iphone_07_17-1-23-1 | 0.7786 | 0.7786 | 1.0000 | 0.8755 |
| iphone_07_17-1-24-1 | 0.7255 | 0.7255 | 1.0000 | 0.8409 |
| iphone_07_17-1-28-1 | 0.9578 | 0.9578 | 1.0000 | 0.9784 |
| iphone_07_17-1-29-1 | 0.9366 | 0.9366 | 1.0000 | 0.9673 |
| iphone_07_17-1-31-1 | 0.8056 | 0.8056 | 1.0000 | 0.8924 |
| iphone_07_17-2-18-2 | 0.9492 | 0.9501 | 0.9990 | 0.9739 |
| iphone_07_17-2-19-2 | 0.9701 | 0.9715 | 0.9986 | 0.9848 |
| iphone_07_17-2-21-2 | 0.9055 | 0.9088 | 0.9960 | 0.9504 |
| iphone_07_17-2-22-2 | 0.8440 | 0.8464 | 0.9964 | 0.9153 |
|  |  |  | Continued... |  |


| File | Accuracy | Precision | Recall | score |
| :---: | :---: | :---: | :---: | :---: |
| iphone_07_17-2-23-2 | 0.6941 | 0.6941 | 1.0000 | 0.8194 |
| iphone_07_17-2-24-2 | 0.7177 | 0.7194 | 0.9958 | 0.8354 |
| iphone_07_17-2-28-2 | 0.9406 | 0.9413 | 0.9992 | 0.9694 |
| iphone_07_17-2-29-2 | 0.9254 | 0.9263 | 0.9989 | 0.9612 |
| iphone_07_17-2-31-2 | 0.8106 | 0.8133 | 0.9959 | 0.8954 |
| iphone_07_17-3-18-3 | 0.8028 | 0.8028 | 1.0000 | 0.8906 |
| iphone_07_17-3-19-3 | 0.8402 | 0.8402 | 1.0000 | 0.9132 |
| iphone_07_17-3-21-3 | 0.8483 | 0.8483 | 1.0000 | 0.9179 |
| iphone_07_17-3-22-3 | 0.7619 | 0.7619 | 1.0000 | 0.8648 |
| iphone_07_17-3-23-3 | 0.7097 | 0.7097 | 1.0000 | 0.8302 |
| iphone_07_17-3-24-3 | 0.7435 | 0.7436 | 0.9999 | 0.8529 |
| iphone_07_17-3-28-3 | 0.9635 | 0.9635 | 1.0000 | 0.9814 |
| iphone_07_17-3-29-3 | 0.8728 | 0.8728 | 1.0000 | 0.9321 |
| iphone_07_17-3-31-3 | 0.7940 | 0.7940 | 1.0000 | 0.8852 |
| iphone_07_18-1-17-1 | 0.9854 | 0.9854 | 1.0000 | 0.9927 |
| iphone_07_18-1-19-1 | 0.9007 | 0.9149 | 0.9826 | 0.9475 |
| iphone_07_18-1-21-1 | 0.8293 | 0.8348 | 0.9903 | 0.9059 |
| iphone_07_18-1-22-1 | 0.8035 | 0.8125 | 0.9829 | 0.8896 |
| iphone_07_18-1-23-1 | 0.7814 | 0.7812 | 0.9991 | 0.8768 |
| iphone_07_18-1-24-1 | 0.7310 | 0.7336 | 0.9881 | 0.8420 |
| iphone_07_18-1-28-1 | 0.9585 | 0.9598 | 0.9985 | 0.9788 |
| iphone_07_18-1-29-1 | 0.9366 | 0.9434 | 0.9918 | 0.9670 |
| iphone_07_18-1-31-1 | 0.8023 | 0.8050 | 0.9959 | 0.8903 |
| iphone_07_18-2-17-2 | 0.9549 | 0.9549 | 1.0000 | 0.9769 |
| iphone_07_18-2-19-2 | 0.9712 | 0.9715 | 0.9997 | 0.9854 |
| iphone_07_18-2-21-2 | 0.9082 | 0.9082 | 1.0000 | 0.9519 |
| iphone_07_18-2-22-2 | 0.8434 | 0.8458 | 0.9967 | 0.9151 |
| iphone_07_18-2-23-2 | 0.6934 | 0.6939 | 0.9990 | 0.8189 |
| iphone_07_18-2-24-2 | 0.7210 | 0.7205 | 0.9999 | 0.8375 |
| iphone_07_18-2-28-2 | 0.9406 | 0.9406 | 1.0000 | 0.9694 |
| iphone_07_18-2-29-2 | 0.9259 | 0.9259 | 1.0000 | 0.9615 |
| iphone_07_18-2-31-2 | 0.8140 | 0.8140 | 1.0000 | 0.8974 |

Continued...

| File | Accuracy | Precision | Recall | core |
| :---: | :---: | :---: | :---: | :---: |
| iphone_07_18-3-17-3 | 0.9607 | 0.9620 | 0.9985 | 0.9799 |
| iphone_07_18-3-19-3 | 0.8368 | 0.8647 | 0.9553 | 0.9077 |
| iphone_07_18-3-21-3 | 0.8381 | 0.8643 | 0.9598 | 0.9096 |
| iphone_07_18-3-22-3 | 0.7666 | 0.7858 | 0.9537 | 0.8616 |
| iphone_07_18-3-23-3 | 0.7268 | 0.7227 | 0.9980 | 0.8383 |
| iphone_07_18-3-24-3 | 0.7485 | 0.7627 | 0.9607 | 0.8503 |
| iphone_07_18-3-28-3 | 0.9614 | 0.9675 | 0.9933 | 0.9802 |
| iphone_07_18-3-29-3 | 0.8631 | 0.8879 | 0.9649 | 0.9248 |
| iphone_07_18-3-31-3 | 0.8056 | 0.8034 | 1.0000 | 0.8910 |
| iphone_07_19-1-17-1 | 0.9854 | 0.9854 | 1.0000 | 0.9927 |
| iphone_07_19-1-18-1 | 0.8913 | 0.8918 | 0.9993 | 0.9425 |
| iphone_07_19-1-21-1 | 0.8298 | 0.8303 | 0.9991 | 0.9069 |
| iphone_07_19-1-22-1 | 0.8056 | 0.8061 | 0.9990 | 0.8922 |
| iphone_07_19-1-23-1 | 0.7800 | 0.7797 | 1.0000 | 0.8762 |
| iphone_07_19-1-24-1 | 0.7278 | 0.7277 | 0.9984 | 0.8418 |
| iphone_07_19-1-28-1 | 0.9564 | 0.9577 | 0.9985 | 0.9777 |
| iphone_07_19-1-29-1 | 0.9366 | 0.9366 | 1.0000 | 0.9673 |
| iphone_07_19-1-31-1 | 0.8073 | 0.8070 | 1.0000 | 0.8932 |
| iphone_07_19-2-17-2 | 0.9549 | 0.9549 | 1.0000 | 0.9769 |
| iphone_07_19-2-18-2 | 0.9501 | 0.9501 | 1.0000 | 0.9744 |
| iphone_07_19-2-21-2 | 0.9087 | 0.9088 | 0.9997 | 0.9521 |
| iphone_07_19-2-22-2 | 0.8463 | 0.8463 | 1.0000 | 0.9168 |
| iphone_07_19-2-23-2 | 0.6948 | 0.6946 | 1.0000 | 0.8198 |
| iphone_07_19-2-24-2 | 0.7193 | 0.7194 | 0.9994 | 0.8366 |
| iphone_07_19-2-28-2 | 0.9399 | 0.9406 | 0.9992 | 0.9690 |
| iphone_07_19-2-29-2 | 0.9259 | 0.9259 | 1.0000 | 0.9615 |
| iphone_07_19-2-31-2 | 0.8140 | 0.8140 | 1.0000 | 0.8974 |
| iphone_07_19-3-17-3 | 0.9578 | 0.9592 | 0.9985 | 0.9784 |
| iphone_07_19-3-18-3 | 0.8106 | 0.8139 | 0.9906 | 0.8936 |
| iphone_07_19-3-21-3 | 0.8410 | 0.8538 | 0.9805 | 0.9128 |
| iphone_07_19-3-22-3 | 0.7700 | 0.7742 | 0.9856 | 0.8672 |
| iphone_07_19-3-23-3 | 0.7104 | 0.7126 | 0.9920 | 0.8294 |

Continued...

| File | Accuracy | Precision | Recall | score |
| :---: | :---: | :---: | :---: | :---: |
| iphone_07_19-3-24-3 | 0.7477 | 0.7541 | 0.9804 | 0.8525 |
| iphone_07_19-3-28-3 | 0.9635 | 0.9662 | 0.9970 | 0.9814 |
| iphone_07_19-3-29-3 | 0.8758 | 0.8797 | 0.9936 | 0.9332 |
| iphone_07_19-3-31-3 | 0.8023 | 0.8007 | 1.0000 | 0.8893 |
| iphone_07_21-1-17-1 | 0.9811 | 0.9854 | 0.9956 | 0.9904 |
| iphone_07_21-1-18-1 | 0.8791 | 0.9050 | 0.9658 | 0.9344 |
| iphone_07_21-1-19-1 | 0.8816 | 0.9165 | 0.9575 | 0.9366 |
| iphone_07_21-1-22-1 | 0.7985 | 0.8205 | 0.9599 | 0.8847 |
| iphone_07_21-1-23-1 | 0.7750 | 0.7794 | 0.9918 | 0.8728 |
| iphone_07_21-1-24-1 | 0.7240 | 0.7348 | 0.9695 | 0.8360 |
| iphone_07_21-1-28-1 | 0.9535 | 0.9603 | 0.9925 | 0.9761 |
| iphone_07_21-1-29-1 | 0.9152 | 0.9450 | 0.9656 | 0.9552 |
| iphone_07_21-1-31-1 | 0.7874 | 0.8020 | 0.9773 | 0.8810 |
| iphone_07_21-2-17-2 | 0.9534 | 0.9548 | 0.9985 | 0.9762 |
| iphone_07_21-2-18-2 | 0.9432 | 0.9514 | 0.9909 | 0.9707 |
| iphone_07_21-2-19-2 | 0.9618 | 0.9745 | 0.9865 | 0.9805 |
| iphone_07_21-2-22-2 | 0.8404 | 0.8489 | 0.9871 | 0.9128 |
| iphone_07_21-2-23-2 | 0.6899 | 0.6928 | 0.9939 | 0.8165 |
| iphone_07_21-2-24-2 | 0.7229 | 0.7264 | 0.9863 | 0.8366 |
| iphone_07_21-2-28-2 | 0.9399 | 0.9425 | 0.9970 | 0.9690 |
| iphone_07_21-2-29-2 | 0.9269 | 0.9299 | 0.9961 | 0.9619 |
| iphone_07_21-2-31-2 | 0.8256 | 0.8246 | 0.9980 | 0.9030 |
| iphone_07_21-3-17-3 | 0.9607 | 0.9620 | 0.9985 | 0.9799 |
| iphone_07_21-3-18-3 | 0.8055 | 0.8122 | 0.9856 | 0.8906 |
| iphone_07_21-3-19-3 | 0.8356 | 0.8484 | 0.9793 | 0.9092 |
| iphone_07_21-3-22-3 | 0.7658 | 0.7722 | 0.9824 | 0.8647 |
| iphone_07_21-3-23-3 | 0.7048 | 0.7092 | 0.9900 | 0.8264 |
| iphone_07_21-3-24-3 | 0.7448 | 0.7526 | 0.9783 | 0.8508 |
| iphone_07_21-3-28-3 | 0.9607 | 0.9641 | 0.9963 | 0.9799 |
| iphone_07_21-3-29-3 | 0.8687 | 0.8800 | 0.9836 | 0.9289 |
| iphone_07_21-3-31-3 | 0.7990 | 0.8000 | 0.9958 | 0.8872 |
| iphone_07_22-1-17-1 | 0.9854 | 0.9854 | 1.0000 | 0.9927 |
| Continued... |  |  |  |  |


| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| iphone_07_22-1-18-1 | 0.8921 | 0.8979 | 0.9917 | 0.9425 |
| iphone_07_22-1-19-1 | 0.9009 | 0.9157 | 0.9818 | 0.9476 |
| iphone_07_22-1-21-1 | 0.8325 | 0.8367 | 0.9918 | 0.9077 |
| iphone_07_22-1-23-1 | 0.7750 | 0.7818 | 0.9863 | 0.8722 |
| iphone_07_22-1-24-1 | 0.7281 | 0.7341 | 0.9805 | 0.8396 |
| iphone_07_22-1-28-1 | 0.9542 | 0.9603 | 0.9933 | 0.9765 |
| iphone_07_22-1-29-1 | 0.9346 | 0.9410 | 0.9924 | 0.9660 |
| iphone_07_22-1-31-1 | 0.8056 | 0.8056 | 1.0000 | 0.8924 |
| iphone_07_22-2-17-2 | 0.9549 | 0.9549 | 1.0000 | 0.9769 |
| iphone_07_22-2-18-2 | 0.9400 | 0.9530 | 0.9855 | 0.9690 |
| iphone_07_22-2-19-2 | 0.9589 | 0.9728 | 0.9853 | 0.9790 |
| iphone_07_22-2-21-2 | 0.9060 | 0.9120 | 0.9922 | 0.9504 |
| iphone_07_22-2-23-2 | 0.6955 | 0.6954 | 0.9990 | 0.8200 |
| iphone_07_22-2-24-2 | 0.7219 | 0.7234 | 0.9928 | 0.8370 |
| iphone_07_22-2-28-2 | 0.9421 | 0.9420 | 1.0000 | 0.9701 |
| iphone_07_22-2-29-2 | 0.9228 | 0.9301 | 0.9912 | 0.9597 |
| iphone_07_22-2-31-2 | 0.8156 | 0.8153 | 1.0000 | 0.8983 |
| iphone_07_22-3-17-3 | 0.9520 | 0.9589 | 0.9924 | 0.9754 |
| iphone_07_22-3-18-3 | 0.8140 | 0.8267 | 0.9720 | 0.8935 |
| iphone_07_22-3-19-3 | 0.8292 | 0.8604 | 0.9509 | 0.9034 |
| iphone_07_22-3-21-3 | 0.8366 | 0.8633 | 0.9592 | 0.9088 |
| iphone_07_22-3-23-3 | 0.7168 | 0.7251 | 0.9680 | 0.8291 |
| iphone_07_22-3-24-3 | 0.7567 | 0.7718 | 0.9552 | 0.8538 |
| iphone_07_22-3-28-3 | 0.9499 | 0.9671 | 0.9814 | 0.9742 |
| iphone_07_22-3-29-3 | 0.8707 | 0.8939 | 0.9666 | 0.9288 |
| iphone_07_22-3-31-3 | 0.8056 | 0.8044 | 0.9979 | 0.8908 |
| iphone_07_23-1-17-1 | 0.9723 | 0.9853 | 0.9867 | 0.9860 |
| iphone_07_23-1-18-1 | 0.8626 | 0.9173 | 0.9297 | 0.9234 |
| iphone_07_23-1-19-1 | 0.8281 | 0.9218 | 0.8868 | 0.9040 |
| iphone_07_23-1-21-1 | 0.8018 | 0.8510 | 0.9229 | 0.8854 |
| iphone_07_23-1-22-1 | 0.7735 | 0.8278 | 0.9076 | 0.8659 |
| iphone_07_23-1-24-1 | 0.7330 | 0.7561 | 0.9330 | 0.8353 |
|  |  |  | Continued.. |  |
| iph |  |  |  | 0 |


| File | Accuracy | Precision | Recall | core |
| :---: | :---: | :---: | :---: | :---: |
| iphone_07_23-1-28-1 | 0.9328 | 0.9615 | 0.9686 | 0.9650 |
| iphone_07_23-1-29-1 | 0.8702 | 0.9530 | 0.9062 | 0.9290 |
| iphone_07_23-1-31-1 | 0.7990 | 0.8095 | 0.9814 | 0.8872 |
| iphone_07_23-2-17-2 | 0.8690 | 0.9506 | 0.9101 | 0.9299 |
| iphone_07_23-2-18-2 | 0.7638 | 0.9580 | 0.7859 | 0.8634 |
| iphone_07_23-2-19-2 | 0.7659 | 0.9733 | 0.7804 | 0.8663 |
| iphone_07_23-2-21-2 | 0.8011 | 0.9354 | 0.8389 | 0.8845 |
| iphone_07_23-2-22-2 | 0.7745 | 0.8883 | 0.8389 | 0.8629 |
| iphone_07_23-2-24-2 | 0.7044 | 0.7601 | 0.8606 | 0.8072 |
| iphone_07_23-2-28-2 | 0.8398 | 0.9453 | 0.8806 | 0.9118 |
| iphone_07_23-2-29-2 | 0.7936 | 0.9373 | 0.8328 | 0.8819 |
| iphone_07_23-2-31-2 | 0.8173 | 0.8493 | 0.9429 | 0.8936 |
| iphone_07_23-3-17-3 | 0.8923 | 0.9563 | 0.9302 | 0.9431 |
| iphone_07_23-3-18-3 | 0.7630 | 0.8589 | 0.8434 | 0.8511 |
| iphone_07_23-3-19-3 | 0.7334 | 0.8837 | 0.7862 | 0.8321 |
| iphone_07_23-3-21-3 | 0.7465 | 0.8838 | 0.8074 | 0.8439 |
| iphone_07_23-3-22-3 | 0.7084 | 0.8171 | 0.7953 | 0.8060 |
| iphone_07_23-3-24-3 | 0.7028 | 0.7898 | 0.8181 | 0.8037 |
| iphone_07_23-3-28-3 | 0.8920 | 0.9709 | 0.9154 | 0.9423 |
| iphone_07_23-3-29-3 | 0.7874 | 0.9115 | 0.8378 | 0.8731 |
| iphone_07_23-3-31-3 | 0.8173 | 0.8370 | 0.9561 | 0.8926 |
| iphone_07_24-1-17-1 | 0.9636 | 0.9851 | 0.9778 | 0.9815 |
| iphone_07_24-1-18-1 | 0.8729 | 0.9147 | 0.9455 | 0.9299 |
| iphone_07_24-1-19-1 | 0.8484 | 0.9213 | 0.9118 | 0.9165 |
| iphone_07_24-1-21-1 | 0.8196 | 0.8573 | 0.9390 | 0.8963 |
| iphone_07_24-1-22-1 | 0.7825 | 0.8332 | 0.9127 | 0.8711 |
| iphone_07_24-1-23-1 | 0.7928 | 0.7953 | 0.9881 | 0.8813 |
| iphone_07_24-1-28-1 | 0.9456 | 0.9640 | 0.9798 | 0.9719 |
| iphone_07_24-1-29-1 | 0.9142 | 0.9567 | 0.9514 | 0.9540 |
| iphone_07_24-1-31-1 | 0.7924 | 0.8093 | 0.9711 | 0.8828 |
| iphone_07_24-2-17-2 | 0.9360 | 0.9540 | 0.9802 | 0.9669 |
| iphone_07_24-2-18-2 | 0.8956 | 0.9543 | 0.9349 | 0.9445 |

Continued...

| File | Accuracy | Precision | Recall | F-score |
| :---: | :---: | :---: | :---: | :---: |
| iphone_07_24-2-19-2 | 0.8859 | 0.9746 | 0.9062 | 0.9392 |
| iphone_07_24-2-21-2 | 0.8783 | 0.9309 | 0.9354 | 0.9331 |
| iphone_07_24-2-22-2 | 0.8160 | 0.8685 | 0.9222 | 0.8945 |
| iphone_07_24-2-23-2 | 0.6977 | 0.7113 | 0.9499 | 0.8135 |
| iphone_07_24-2-28-2 | 0.9263 | 0.9469 | 0.9764 | 0.9614 |
| iphone_07_24-2-29-2 | 0.9024 | 0.9417 | 0.9536 | 0.9476 |
| iphone_07_24-2-31-2 | 0.8040 | 0.8207 | 0.9714 | 0.8897 |
| iphone_07_24-3-17-3 | 0.9534 | 0.9590 | 0.9939 | 0.9762 |
| iphone_07_24-3-18-3 | 0.8139 | 0.8215 | 0.9814 | 0.8943 |
| iphone_07_24-3-19-3 | 0.8362 | 0.8571 | 0.9661 | 0.9084 |
| iphone_07_24-3-21-3 | 0.8403 | 0.8624 | 0.9658 | 0.9112 |
| iphone_07_24-3-22-3 | 0.7748 | 0.7860 | 0.9680 | 0.8675 |
| iphone_07_24-3-23-3 | 0.7161 | 0.7168 | 0.9920 | 0.8322 |
| iphone_07_24-3-28-3 | 0.9578 | 0.9667 | 0.9903 | 0.9784 |
| iphone_07_24-3-29-3 | 0.8728 | 0.8878 | 0.9778 | 0.9306 |
| iphone_07_24-3-31-3 | 0.8040 | 0.8041 | 0.9958 | 0.8897 |
| iphone_07_28-1-17-1 | 0.9767 | 0.9853 | 0.9911 | 0.9882 |
| iphone_07_28-1-18-1 | 0.8924 | 0.8937 | 0.9980 | 0.9430 |
| iphone_07_28-1-19-1 | 0.9097 | 0.9131 | 0.9958 | 0.9526 |
| iphone_07_28-1-21-1 | 0.8286 | 0.8316 | 0.9950 | 0.9060 |
| iphone_07_28-1-22-1 | 0.8047 | 0.8085 | 0.9925 | 0.8911 |
| iphone_07_28-1-23-1 | 0.7800 | 0.7805 | 0.9982 | 0.8760 |
| iphone_07_28-1-24-1 | 0.7314 | 0.7308 | 0.9968 | 0.8434 |
| iphone_07_28-1-29-1 | 0.9361 | 0.9393 | 0.9962 | 0.9669 |
| iphone_07_28-1-31-1 | 0.8073 | 0.8070 | 1.0000 | 0.8932 |
| iphone_07_28-2-17-2 | 0.9432 | 0.9557 | 0.9863 | 0.9707 |
| iphone_07_28-2-18-2 | 0.9460 | 0.9515 | 0.9938 | 0.9722 |
| iphone_07_28-2-19-2 | 0.9640 | 0.9744 | 0.9889 | 0.9816 |
| iphone_07_28-2-21-2 | 0.9041 | 0.9114 | 0.9906 | 0.9494 |
| iphone_07_28-2-22-2 | 0.8431 | 0.8521 | 0.9856 | 0.9140 |
| iphone_07_28-2-23-2 | 0.6962 | 0.6961 | 0.9980 | 0.8202 |
| iphone_07_28-2-24-2 | 0.7195 | 0.7237 | 0.9866 | 0.8349 |

Continued...

| File | Accuracy | Precision | Recall | score |
| :---: | :---: | :---: | :---: | :---: |
| iphone_07_28-2-29-2 | 0.9228 | 0.9292 | 0.9923 | 0.9597 |
| iphone_07_28-2-31-2 | 0.8173 | 0.8188 | 0.9959 | 0.8987 |
| iphone_07_28-3-17-3 | 0.9476 | 0.9588 | 0.9879 | 0.9731 |
| iphone_07_28-3-18-3 | 0.8068 | 0.8076 | 0.9968 | 0.8923 |
| iphone_07_28-3-19-3 | 0.8404 | 0.8430 | 0.9954 | 0.9129 |
| iphone_07_28-3-21-3 | 0.8427 | 0.8488 | 0.9911 | 0.9145 |
| iphone_07_28-3-22-3 | 0.7615 | 0.7667 | 0.9875 | 0.8632 |
| iphone_07_28-3-23-3 | 0.7147 | 0.7133 | 1.0000 | 0.8326 |
| iphone_07_28-3-24-3 | 0.7487 | 0.7496 | 0.9943 | 0.8547 |
| iphone_07_28-3-29-3 | 0.8728 | 0.8770 | 0.9936 | 0.9316 |
| iphone_07_28-3-31-3 | 0.8007 | 0.7993 | 1.0000 | 0.8885 |
| iphone_07_29-1-17-1 | 0.9854 | 0.9854 | 1.0000 | 0.9927 |
| iphone_07_29-1-18-1 | 0.8913 | 0.8918 | 0.9993 | 0.9425 |
| iphone_07_29-1-19-1 | 0.9095 | 0.9128 | 0.9960 | 0.9526 |
| iphone_07_29-1-21-1 | 0.8288 | 0.8300 | 0.9982 | 0.9064 |
| iphone_07_29-1-22-1 | 0.8062 | 0.8070 | 0.9981 | 0.8924 |
| iphone_07_29-1-23-1 | 0.7793 | 0.7791 | 1.0000 | 0.8758 |
| iphone_07_29-1-24-1 | 0.7272 | 0.7270 | 0.9991 | 0.8416 |
| iphone_07_29-1-28-1 | 0.9578 | 0.9578 | 1.0000 | 0.9784 |
| iphone_07_29-1-31-1 | 0.8056 | 0.8056 | 1.0000 | 0.8924 |
| iphone_07_29-2-17-2 | 0.9549 | 0.9549 | 1.0000 | 0.9769 |
| iphone_07_29-2-18-2 | 0.9492 | 0.9502 | 0.9988 | 0.9739 |
| iphone_07_29-2-19-2 | 0.9703 | 0.9738 | 0.9962 | 0.9849 |
| iphone_07_29-2-21-2 | 0.9070 | 0.9097 | 0.9965 | 0.9511 |
| iphone_07_29-2-22-2 | 0.8437 | 0.8473 | 0.9945 | 0.9150 |
| iphone_07_29-2-23-2 | 0.6955 | 0.6951 | 1.0000 | 0.8201 |
| iphone_07_29-2-24-2 | 0.7195 | 0.7211 | 0.9945 | 0.8360 |
| iphone_07_29-2-28-2 | 0.9413 | 0.9419 | 0.9992 | 0.9697 |
| iphone_07_29-2-31-2 | 0.8206 | 0.8194 | 1.0000 | 0.9007 |
| iphone_07_29-3-17-3 | 0.9374 | 0.9583 | 0.9772 | 0.9677 |
| iphone_07_29-3-18-3 | 0.8004 | 0.8133 | 0.9752 | 0.8869 |
| iphone_07_29-3-19-3 | 0.8255 | 0.8527 | 0.9577 | 0.9022 |

Continued...

| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| iphone_07_29-3-21-3 | 0.8366 | 0.8615 | 0.9621 | 0.9090 |
| iphone_07_29-3-22-3 | 0.7568 | 0.7769 | 0.9550 | 0.8568 |
| iphone_07_29-3-23-3 | 0.6984 | 0.7109 | 0.9690 | 0.8201 |
| iphone_07_29-3-24-3 | 0.7328 | 0.7565 | 0.9447 | 0.8402 |
| iphone_07_29-3-28-3 | 0.9413 | 0.9647 | 0.9748 | 0.9697 |
| iphone_07_29-3-31-3 | 0.8090 | 0.8212 | 0.9707 | 0.8897 |
| iphone_07_31-1-17-1 | 0.9229 | 0.9875 | 0.9335 | 0.9598 |
| iphone_07_31-1-18-1 | 0.8296 | 0.8925 | 0.9196 | 0.9058 |
| iphone_07_31-1-19-1 | 0.8521 | 0.9098 | 0.9302 | 0.9199 |
| iphone_07_31-1-21-1 | 0.8042 | 0.8395 | 0.9449 | 0.8890 |
| iphone_07_31-1-22-1 | 0.7543 | 0.8120 | 0.9043 | 0.8557 |
| iphone_07_31-1-23-1 | 0.7204 | 0.7693 | 0.9152 | 0.8360 |
| iphone_07_31-1-24-1 | 0.6978 | 0.7267 | 0.9351 | 0.8179 |
| iphone_07_31-1-28-1 | 0.8984 | 0.9572 | 0.9358 | 0.9464 |
| iphone_07_31-1-29-1 | 0.8820 | 0.9377 | 0.9362 | 0.9369 |
| iphone_07_31-2-17-2 | 0.9025 | 0.9538 | 0.9436 | 0.9487 |
| iphone_07_31-2-18-2 | 0.8587 | 0.9518 | 0.8967 | 0.9235 |
| iphone_07_31-2-19-2 | 0.8870 | 0.9737 | 0.9083 | 0.9398 |
| iphone_07_31-2-21-2 | 0.8420 | 0.9174 | 0.9078 | 0.9125 |
| iphone_07_31-2-22-2 | 0.7660 | 0.8550 | 0.8712 | 0.8630 |
| iphone_07_31-2-23-2 | 0.6863 | 0.6959 | 0.9734 | 0.8116 |
| iphone_07_31-2-24-2 | 0.6819 | 0.7184 | 0.9172 | 0.8057 |
| iphone_07_31-2-28-2 | 0.8970 | 0.9439 | 0.9468 | 0.9453 |
| iphone_07_31-2-29-2 | 0.8615 | 0.9341 | 0.9150 | 0.9244 |
| iphone_07_31-3-17-3 | 0.8763 | 0.9614 | 0.9074 | 0.9336 |
| iphone_07_31-3-18-3 | 0.7404 | 0.8152 | 0.8750 | 0.8440 |
| iphone_07_31-3-19-3 | 0.7671 | 0.8467 | 0.8826 | 0.8643 |
| iphone_07_31-3-21-3 | 0.7991 | 0.8719 | 0.8947 | 0.8831 |
| iphone_07_31-3-22-3 | 0.6824 | 0.7700 | 0.8314 | 0.7995 |
| iphone_07_31-3-23-3 | 0.7076 | 0.7191 | 0.9650 | 0.8241 |
| iphone_07_31-3-24-3 | 0.6943 | 0.7491 | 0.8854 | 0.8116 |
| iphone_07_31-3-28-3 | 0.8941 | 0.9644 | 0.9243 | 0.9439 |
| iph 10.3 |  |  |  |  |

Continued...

| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| iphone_07_31-3-29-3 | 0.8160 | 0.8910 | 0.8993 | 0.8951 |
|  |  |  |  |  |
| Min | 0.6819 | 0.6928 | 0.7804 | 0.7995 |
| Max | 0.9854 | 0.9875 | 1.0000 | 0.9927 |
| Avg | 0.8405 | 0.8618 | 0.9693 | 0.9093 |
| Std Dev | 0.0851 | 0.0864 | 0.0456 | 0.0522 |

## F. 2 \#\#iphone, SAME SESSION, DIFFERENT ANNOTATOR

| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| iphone_07_17-1-2 | 0.9549 | 0.9549 | 1.0000 | 0.9769 |
| iphone_07_17-1-3 | 0.9592 | 0.9592 | 1.0000 | 0.9792 |
| iphone_07_17-2-1 | 0.9869 | 0.9869 | 1.0000 | 0.9934 |
| iphone_07_17-2-3 | 0.9607 | 0.9606 | 1.0000 | 0.9799 |
| iphone_07_17-3-1 | 0.9854 | 0.9854 | 1.0000 | 0.9927 |
| iphone_07_17-3-2 | 0.9549 | 0.9549 | 1.0000 | 0.9769 |
| iphone_07_18-1-2 | 0.9404 | 0.9536 | 0.9852 | 0.9691 |
| iphone_07_18-1-3 | 0.8087 | 0.8115 | 0.9922 | 0.8928 |
| iphone_07_18-2-1 | 0.8915 | 0.8915 | 1.0000 | 0.9426 |
| iphone_07_18-2-3 | 0.8028 | 0.8028 | 1.0000 | 0.8906 |
| iphone_07_18-3-1 | 0.8868 | 0.9121 | 0.9662 | 0.9383 |
| iphone_07_18-3-2 | 0.9169 | 0.9591 | 0.9533 | 0.9562 |
| iphone_07_19-1-2 | 0.9714 | 0.9728 | 0.9984 | 0.9855 |
| iphone_07_19-1-3 | 0.8410 | 0.8416 | 0.9987 | 0.9135 |
| iphone_07_19-2-1 | 0.9138 | 0.9138 | 0.9998 | 0.9549 |
| iphone_07_19-2-3 | 0.8418 | 0.8415 | 1.0000 | 0.9139 |
| iphone_07_19-3-1 | 0.8975 | 0.9166 | 0.9766 | 0.9456 |
| iphone_07_19-3-2 | 0.9509 | 0.9744 | 0.9751 | 0.9747 |
| iphone_07_21-1-2 | 0.8955 | 0.9201 | 0.9692 | 0.9440 |
| iphone_07_21-1-3 | 0.8507 | 0.8654 | 0.9759 | 0.9173 |
|  |  |  | Continued... |  |


| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| iphone_07_21-2-1 | 0.8381 | 0.8388 | 0.9965 | 0.9108 |
| iphone_07_21-2-3 | 0.8539 | 0.8560 | 0.9951 | 0.9204 |
| iphone_07_21-3-1 | 0.8442 | 0.8467 | 0.9918 | 0.9135 |
| iphone_07_21-3-2 | 0.9058 | 0.9186 | 0.9834 | 0.9499 |
| iphone_07_22-1-2 | 0.8365 | 0.8503 | 0.9791 | 0.9102 |
| iphone_07_22-1-3 | 0.7717 | 0.7738 | 0.9895 | 0.8685 |
| iphone_07_22-2-1 | 0.8033 | 0.8097 | 0.9881 | 0.8900 |
| iphone_07_22-2-3 | 0.7627 | 0.7668 | 0.9894 | 0.8640 |
| iphone_07_22-3-1 | 0.8019 | 0.8302 | 0.9480 | 0.8852 |
| iphone_07_22-3-2 | 0.8249 | 0.8648 | 0.9401 | 0.9009 |
| iphone_07_23-1-2 | 0.7019 | 0.7098 | 0.9652 | 0.8180 |
| iphone_07_23-1-3 | 0.7374 | 0.7368 | 0.9800 | 0.8412 |
| iphone_07_23-2-1 | 0.7374 | 0.8068 | 0.8715 | 0.8379 |
| iphone_07_23-2-3 | 0.7140 | 0.7519 | 0.8910 | 0.8156 |
| iphone_07_23-3-1 | 0.7793 | 0.8129 | 0.9307 | 0.8678 |
| iphone_07_23-3-2 | 0.7104 | 0.7269 | 0.9335 | 0.8174 |
| iphone_07_24-1-2 | 0.7277 | 0.7485 | 0.9359 | 0.8317 |
| iphone_07_24-1-3 | 0.7470 | 0.7728 | 0.9345 | 0.8460 |
| iphone_07_24-2-1 | 0.7304 | 0.7585 | 0.9220 | 0.8323 |
| iphone_07_24-2-3 | 0.7452 | 0.7771 | 0.9216 | 0.8432 |
| iphone_07_24-3-1 | 0.7344 | 0.7460 | 0.9612 | 0.8400 |
| iphone_07_24-3-2 | 0.7310 | 0.7407 | 0.9630 | 0.8374 |
| iphone_07_28-1-2 | 0.9428 | 0.9427 | 1.0000 | 0.9705 |
| iphone_07_28-1-3 | 0.9657 | 0.9656 | 1.0000 | 0.9825 |
| iphone_07_28-2-1 | 0.9557 | 0.9590 | 0.9963 | 0.9773 |
| iphone_07_28-2-3 | 0.9614 | 0.9648 | 0.9963 | 0.9803 |
| iphone_07_28-3-1 | 0.9607 | 0.9605 | 1.0000 | 0.9799 |
| iphone_07_28-3-2 | 0.9435 | 0.9433 | 1.0000 | 0.9708 |
| iphone_07_29-1-2 | 0.9269 | 0.9282 | 0.9983 | 0.9620 |
| iphone_07_29-1-3 | 0.8758 | 0.8758 | 0.9994 | 0.9336 |
| iphone_07_29-2-1 | 0.9382 | 0.9394 | 0.9984 | 0.9680 |
| iphone_07_29-2-3 | 0.8763 | 0.8763 | 0.9994 | 0.9338 |
| iph 070 |  |  |  |  |

Continued...

| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| iphone_07_29-3-1 | 0.9244 | 0.9489 | 0.9716 | 0.9601 |
| iphone_07_29-3-2 | 0.9136 | 0.9377 | 0.9713 | 0.9542 |
| iphone_07_31-1-2 | 0.8306 | 0.8647 | 0.9388 | 0.9002 |
| iphone_07_31-1-3 | 0.8339 | 0.8553 | 0.9519 | 0.9010 |
| iphone_07_31-2-1 | 0.8090 | 0.8426 | 0.9381 | 0.8878 |
| iphone_07_31-2-3 | 0.8439 | 0.8556 | 0.9665 | 0.9077 |
| iphone_07_31-3-1 | 0.8339 | 0.8681 | 0.9361 | 0.9008 |
| iphone_07_31-3-2 | 0.8654 | 0.8910 | 0.9510 | 0.9200 |
|  |  |  |  |  |
| Min | 0.7019 | 0.7098 | 0.8715 | 0.8156 |
| Max | 0.9869 | 0.9869 | 1.0000 | 0.9934 |
| Avg | 0.8575 | 0.8707 | 0.9736 | 0.9178 |
| Std Dev | 0.0842 | 0.0792 | 0.0302 | 0.0530 |

## F. 3 \#\#physics, SAME ANNOTATOR, DIFFERENT SESSION

| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| physics_07_17-1-18-1 | 0.9951 | 0.9951 | 1.0000 | 0.9975 |
| physics_07_17-1-19-1 | 0.9228 | 0.9228 | 1.0000 | 0.9598 |
| physics_07_17-1-21-1 | 0.9518 | 0.9518 | 1.0000 | 0.9753 |
| physics_07_17-1-22-1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_17-1-23-1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_17-1-24-1 | 0.8936 | 0.8936 | 1.0000 | 0.9438 |
| physics_07_17-1-28-1 | 0.9083 | 0.9083 | 1.0000 | 0.9519 |
| physics_07_17-1-29-1 | 0.9872 | 0.9872 | 1.0000 | 0.9936 |
| physics_07_17-1-31-1 | 0.9724 | 0.9724 | 1.0000 | 0.9860 |
| physics_07_17-2-18-2 | 0.9541 | 0.9949 | 0.9588 | 0.9765 |
| physics_07_17-2-19-2 | 0.9027 | 0.9076 | 0.9933 | 0.9486 |
| physics_07_17-2-21-2 | 0.9391 | 0.9665 | 0.9705 | 0.9685 |
| physics_07_17-2-22-2 | 0.9718 | 0.9818 | 0.9895 | 0.9857 |


| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| physics_07_17-2-23-2 | 0.9669 | 0.9759 | 0.9906 | 0.9832 |
| physics_07_17-2-24-2 | 0.7818 | 0.8194 | 0.9409 | 0.8760 |
| physics_07_17-2-28-2 | 0.6409 | 0.6515 | 0.9675 | 0.7786 |
| physics_07_17-2-29-2 | 0.8685 | 0.9128 | 0.9457 | 0.9290 |
| physics_07_17-2-31-2 | 0.9586 | 0.9642 | 0.9939 | 0.9788 |
| physics_07_17-3-18-3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_17-3-19-3 | 0.9393 | 0.9393 | 1.0000 | 0.9687 |
| physics_07_17-3-21-3 | 0.9409 | 0.9409 | 1.0000 | 0.9696 |
| physics_07_17-3-22-3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_17-3-23-3 | 0.9779 | 0.9779 | 1.0000 | 0.9888 |
| physics_07_17-3-24-3 | 0.8645 | 0.8645 | 1.0000 | 0.9273 |
| physics_07_17-3-28-3 | 0.6845 | 0.6845 | 1.0000 | 0.8127 |
| physics_07_17-3-29-3 | 0.8387 | 0.8387 | 1.0000 | 0.9123 |
| physics_07_17-3-31-3 | 0.9270 | 0.9270 | 1.0000 | 0.9621 |
| physics_07_18-1-17-1 | 0.9875 | 0.9875 | 1.0000 | 0.9937 |
| physics_07_18-1-19-1 | 0.9228 | 0.9228 | 1.0000 | 0.9598 |
| physics_07_18-1-21-1 | 0.9518 | 0.9518 | 1.0000 | 0.9753 |
| physics_07_18-1-22-1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_18-1-23-1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_18-1-24-1 | 0.8936 | 0.8936 | 1.0000 | 0.9438 |
| physics_07_18-1-28-1 | 0.9083 | 0.9083 | 1.0000 | 0.9519 |
| physics_07_18-1-29-1 | 0.9872 | 0.9872 | 1.0000 | 0.9936 |
| physics_07_18-1-31-1 | 0.9724 | 0.9724 | 1.0000 | 0.9860 |
| physics_07_18-2-17-2 | 0.9438 | 0.9438 | 1.0000 | 0.9711 |
| physics_07_18-2-19-2 | 0.9031 | 0.9031 | 1.0000 | 0.9491 |
| physics_07_18-2-21-2 | 0.9651 | 0.9651 | 1.0000 | 0.9822 |
| physics_07_18-2-22-2 | 0.9820 | 0.9820 | 1.0000 | 0.9909 |
| physics_07_18-2-23-2 | 0.9761 | 0.9761 | 1.0000 | 0.9879 |
| physics_07_18-2-24-2 | 0.8188 | 0.8188 | 1.0000 | 0.9004 |
| physics_07_18-2-28-2 | 0.6528 | 0.6528 | 1.0000 | 0.7899 |
| physics_07_18-2-29-2 | 0.9093 | 0.9093 | 1.0000 | 0.9525 |
| physics_07_18-2-31-2 | 0.9625 | 0.9625 | 1.0000 | 0.9809 |
|  |  |  | Continued... |  |


| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| physics_07_18-3-17-3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_18-3-19-3 | 0.9393 | 0.9393 | 1.0000 | 0.9687 |
| physics_07_18-3-21-3 | 0.9409 | 0.9409 | 1.0000 | 0.9696 |
| physics_07_18-3-22-3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_18-3-23-3 | 0.9779 | 0.9779 | 1.0000 | 0.9888 |
| physics_07_18-3-24-3 | 0.8645 | 0.8645 | 1.0000 | 0.9273 |
| physics_07_18-3-28-3 | 0.6845 | 0.6845 | 1.0000 | 0.8127 |
| physics_07_18-3-29-3 | 0.8387 | 0.8387 | 1.0000 | 0.9123 |
| physics_07_18-3-31-3 | 0.9270 | 0.9270 | 1.0000 | 0.9621 |
| physics_07_19-1-17-1 | 0.9750 | 0.9873 | 0.9873 | 0.9873 |
| physics_07_19-1-18-1 | 0.9721 | 0.9950 | 0.9769 | 0.9859 |
| physics_07_19-1-21-1 | 0.9304 | 0.9515 | 0.9767 | 0.9639 |
| physics_07_19-1-22-1 | 0.9961 | 1.0000 | 0.9961 | 0.9981 |
| physics_07_19-1-23-1 | 0.9963 | 1.0000 | 0.9963 | 0.9982 |
| physics_07_19-1-24-1 | 0.8551 | 0.8948 | 0.9494 | 0.9213 |
| physics_07_19-1-28-1 | 0.8751 | 0.9154 | 0.9503 | 0.9325 |
| physics_07_19-1-29-1 | 0.9589 | 0.9869 | 0.9713 | 0.9790 |
| physics_07_19-1-31-1 | 0.9763 | 0.9762 | 1.0000 | 0.9880 |
| physics_07_19-2-17-2 | 0.9625 | 0.9618 | 1.0000 | 0.9805 |
| physics_07_19-2-18-2 | 0.9525 | 0.9949 | 0.9572 | 0.9757 |
| physics_07_19-2-21-2 | 0.9379 | 0.9684 | 0.9672 | 0.9678 |
| physics_07_19-2-22-2 | 0.9782 | 0.9820 | 0.9961 | 0.9890 |
| physics_07_19-2-23-2 | 0.9651 | 0.9758 | 0.9887 | 0.9822 |
| physics_07_19-2-24-2 | 0.7818 | 0.8362 | 0.9122 | 0.8726 |
| physics_07_19-2-28-2 | 0.6460 | 0.6658 | 0.9190 | 0.7722 |
| physics_07_19-2-29-2 | 0.8800 | 0.9218 | 0.9485 | 0.9350 |
| physics_07_19-2-31-2 | 0.9625 | 0.9644 | 0.9980 | 0.9809 |
| physics_07_19-3-17-3 | 0.9875 | 1.0000 | 0.9875 | 0.9937 |
| physics_07_19-3-18-3 | 0.9984 | 1.0000 | 0.9984 | 0.9992 |
| physics_07_19-3-21-3 | 0.9282 | 0.9405 | 0.9861 | 0.9628 |
| physics_07_19-3-22-3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_19-3-23-3 | 0.9779 | 0.9779 | 1.0000 | 0.9888 |
|  |  |  | Continued... |  |


| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| physics_07_19-3-24-3 | 0.8395 | 0.8650 | 0.9650 | 0.9123 |
| physics_07_19-3-28-3 | 0.6824 | 0.6899 | 0.9738 | 0.8076 |
| physics_07_19-3-29-3 | 0.8395 | 0.8449 | 0.9904 | 0.9119 |
| physics_07_19-3-31-3 | 0.9310 | 0.9307 | 1.0000 | 0.9641 |
| physics_07_21-1-17-1 | 0.9875 | 0.9875 | 1.0000 | 0.9937 |
| physics_07_21-1-18-1 | 0.9951 | 0.9951 | 1.0000 | 0.9975 |
| physics_07_21-1-19-1 | 0.9228 | 0.9228 | 1.0000 | 0.9598 |
| physics_07_21-1-22-1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_21-1-23-1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_21-1-24-1 | 0.8936 | 0.8936 | 1.0000 | 0.9438 |
| physics_07_21-1-28-1 | 0.9083 | 0.9083 | 1.0000 | 0.9519 |
| physics_07_21-1-29-1 | 0.9872 | 0.9872 | 1.0000 | 0.9936 |
| physics_07_21-1-31-1 | 0.9724 | 0.9724 | 1.0000 | 0.9860 |
| physics_07_21-2-17-2 | 0.9438 | 0.9438 | 1.0000 | 0.9711 |
| physics_07_21-2-18-2 | 0.9934 | 0.9951 | 0.9984 | 0.9967 |
| physics_07_21-2-19-2 | 0.9047 | 0.9046 | 1.0000 | 0.9499 |
| physics_07_21-2-22-2 | 0.9820 | 0.9820 | 1.0000 | 0.9909 |
| physics_07_21-2-23-2 | 0.9761 | 0.9761 | 1.0000 | 0.9879 |
| physics_07_21-2-24-2 | 0.8178 | 0.8187 | 0.9985 | 0.8997 |
| physics_07_21-2-28-2 | 0.6519 | 0.6525 | 0.9986 | 0.7893 |
| physics_07_21-2-29-2 | 0.9098 | 0.9100 | 0.9997 | 0.9528 |
| physics_07_21-2-31-2 | 0.9625 | 0.9625 | 1.0000 | 0.9809 |
| physics_07_21-3-17-3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_21-3-18-3 | 0.9869 | 1.0000 | 0.9869 | 0.9934 |
| physics_07_21-3-19-3 | 0.9389 | 0.9393 | 0.9996 | 0.9685 |
| physics_07_21-3-22-3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_21-3-23-3 | 0.9779 | 0.9779 | 1.0000 | 0.9888 |
| physics_07_21-3-24-3 | 0.8633 | 0.8644 | 0.9984 | 0.9266 |
| physics_07_21-3-28-3 | 0.6869 | 0.6864 | 0.9991 | 0.8137 |
| physics_07_21-3-29-3 | 0.8375 | 0.8392 | 0.9973 | 0.9114 |
| physics_07_21-3-31-3 | 0.9270 | 0.9270 | 1.0000 | 0.9621 |
| physics_07_22-1-17-1 | 0.9875 | 0.9875 | 1.0000 | 0.9937 |
|  |  |  | Continued.. |  |


| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| physics_07_22-1-18-1 | 0.9951 | 0.9951 | 1.0000 | 0.9975 |
| physics_07_22-1-19-1 | 0.9228 | 0.9228 | 1.0000 | 0.9598 |
| physics_07_22-1-21-1 | 0.9518 | 0.9518 | 1.0000 | 0.9753 |
| physics_07_22-1-23-1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_22-1-24-1 | 0.8936 | 0.8936 | 1.0000 | 0.9438 |
| physics_07_22-1-28-1 | 0.9083 | 0.9083 | 1.0000 | 0.9519 |
| physics_07_22-1-29-1 | 0.9872 | 0.9872 | 1.0000 | 0.9936 |
| physics_07_22-1-31-1 | 0.9724 | 0.9724 | 1.0000 | 0.9860 |
| physics_07_22-2-17-2 | 0.9438 | 0.9438 | 1.0000 | 0.9711 |
| physics_07_22-2-18-2 | 0.9951 | 0.9951 | 1.0000 | 0.9975 |
| physics_07_22-2-19-2 | 0.9027 | 0.9031 | 0.9996 | 0.9489 |
| physics_07_22-2-21-2 | 0.9647 | 0.9651 | 0.9996 | 0.9820 |
| physics_07_22-2-23-2 | 0.9761 | 0.9761 | 1.0000 | 0.9879 |
| physics_07_22-2-24-2 | 0.8184 | 0.8189 | 0.9991 | 0.9001 |
| physics_07_22-2-28-2 | 0.6522 | 0.6526 | 0.9991 | 0.7895 |
| physics_07_22-2-29-2 | 0.9076 | 0.9092 | 0.9981 | 0.9516 |
| physics_07_22-2-31-2 | 0.9625 | 0.9625 | 1.0000 | 0.9809 |
| physics_07_22-3-17-3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_22-3-18-3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_22-3-19-3 | 0.9393 | 0.9393 | 1.0000 | 0.9687 |
| physics_07_22-3-21-3 | 0.9409 | 0.9409 | 1.0000 | 0.9696 |
| physics_07_22-3-23-3 | 0.9779 | 0.9779 | 1.0000 | 0.9888 |
| physics_07_22-3-24-3 | 0.8645 | 0.8645 | 1.0000 | 0.9273 |
| physics_07_22-3-28-3 | 0.6845 | 0.6845 | 1.0000 | 0.8127 |
| physics_07_22-3-29-3 | 0.8387 | 0.8387 | 1.0000 | 0.9123 |
| physics_07_22-3-31-3 | 0.9270 | 0.9270 | 1.0000 | 0.9621 |
| physics_07_23-1-17-1 | 0.9875 | 0.9875 | 1.0000 | 0.9937 |
| physics_07_23-1-18-1 | 0.9951 | 0.9951 | 1.0000 | 0.9975 |
| physics_07_23-1-19-1 | 0.9228 | 0.9228 | 1.0000 | 0.9598 |
| physics_07_23-1-21-1 | 0.9518 | 0.9518 | 1.0000 | 0.9753 |
| physics_07_23-1-22-1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_23-1-24-1 | 0.8936 | 0.8936 | 1.0000 | 0.9438 |
|  |  |  | Continued... |  |


| File | Accuracy | Precision | Recall | F-score |
| :---: | :---: | :---: | :---: | :---: |
| physics_07_23-1-28-1 | 0.9083 | 0.9083 | 1.0000 | 0.9519 |
| physics_07_23-1-29-1 | 0.9872 | 0.9872 | 1.0000 | 0.9936 |
| physics_07_23-1-31-1 | 0.9724 | 0.9724 | 1.0000 | 0.9860 |
| physics_07_23-2-17-2 | 0.9438 | 0.9438 | 1.0000 | 0.9711 |
| physics_07_23-2-18-2 | 0.9967 | 0.9967 | 1.0000 | 0.9984 |
| physics_07_23-2-19-2 | 0.9035 | 0.9035 | 1.0000 | 0.9493 |
| physics_07_23-2-21-2 | 0.9649 | 0.9653 | 0.9996 | 0.9821 |
| physics_07_23-2-22-2 | 0.9820 | 0.9820 | 1.0000 | 0.9909 |
| physics_07_23-2-24-2 | 0.8188 | 0.8188 | 1.0000 | 0.9004 |
| physics_07_23-2-28-2 | 0.6549 | 0.6542 | 1.0000 | 0.7910 |
| physics_07_23-2-29-2 | 0.9083 | 0.9093 | 0.9989 | 0.9520 |
| physics_07_23-2-31-2 | 0.9606 | 0.9625 | 0.9980 | 0.9799 |
| physics_07_23-3-17-3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_23-3-18-3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_23-3-19-3 | 0.9397 | 0.9397 | 1.0000 | 0.9689 |
| physics_07_23-3-21-3 | 0.9393 | 0.9408 | 0.9983 | 0.9687 |
| physics_07_23-3-22-3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_23-3-24-3 | 0.8645 | 0.8645 | 1.0000 | 0.9273 |
| physics_07_23-3-28-3 | 0.6863 | 0.6857 | 1.0000 | 0.8136 |
| physics_07_23-3-29-3 | 0.8380 | 0.8386 | 0.9991 | 0.9118 |
| physics_07_23-3-31-3 | 0.9270 | 0.9270 | 1.0000 | 0.9621 |
| physics_07_24-1-17-1 | 0.9875 | 0.9875 | 1.0000 | 0.9937 |
| physics_07_24-1-18-1 | 0.9836 | 0.9967 | 0.9868 | 0.9917 |
| physics_07_24-1-19-1 | 0.9240 | 0.9243 | 0.9996 | 0.9604 |
| physics_07_24-1-21-1 | 0.9500 | 0.9524 | 0.9972 | 0.9743 |
| physics_07_24-1-22-1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_24-1-23-1 | 0.9890 | 1.0000 | 0.9890 | 0.9945 |
| physics_07_24-1-28-1 | 0.9110 | 0.9134 | 0.9964 | 0.9531 |
| physics_07_24-1-29-1 | 0.9822 | 0.9874 | 0.9947 | 0.9910 |
| physics_07_24-1-31-1 | 0.9842 | 0.9879 | 0.9959 | 0.9919 |
| physics_07_24-2-17-2 | 0.9438 | 0.9438 | 1.0000 | 0.9711 |
| physics_07_24-2-18-2 | 0.9443 | 0.9983 | 0.9456 | 0.9712 |

Continued...

| F | Accuracy | Precision | Recall | ore |
| :---: | :---: | :---: | :---: | :---: |
| ysics_07_24-2-19- | 0.8995 | 0.9094 | 0.9871 | 0.9 |
| physics_07_24-2-21 | 0.9445 | 0.9665 | 0.9764 | . 9 |
| physics_07_24-2-22-2 | 0.9795 | 0.9820 | 0.9974 | 0.9896 |
| physics_07_24-2-23-2 | 0.9835 | 0.9869 | 0.9962 | 0.9916 |
| physics_07_24-2-28-2 | 0.6785 | 0.6729 | 0.9876 | 0.8004 |
| physics_07_24-2-29-2 | 0.8830 | 0.9109 | 0.9658 | 0.9 |
| physics_07_24-2-31 | 0.9566 | 0.97 | 0.9775 | 0.9775 |
| physics_07_24-3-17-3 | 1.0000 | 1.0000 | 1.0000 | 1.00 |
| physics_07_24-3-18-3 | 0.9967 | 1.0000 | 0.9967 | 0.998 |
| physics_07_24-3-19-3 | 0.9397 | 0.9407 | 0.9987 | 0.9689 |
| physics_07_24-3-21-3 | 0.9373 | 0.9412 | 0.9955 | 0.9676 |
| physics_07_24-3-22-3 | 1.0000 | 1.0000 | 1.0000 | . 000 |
| physics_07_24-3-23-3 | 0.9853 | 0.98 | 0.9981 | 0.9 |
| physics_07_24-3-28-3 | 0.6944 | 0.691 | 0.99 | 0.8 |
| physics_07_24-3-29-3 | 0.8342 | 0.8382 | 0.9943 | 0.909 |
| physics_07_24-3-31-3 | 0.9250 | 0.9303 | 0.9936 | 0.9609 |
| physics_07_28-1-17- | 0.9875 | 0.9875 | 1.0000 | 0.9937 |
| physics_07_28-1-18-1 | 0.9951 | 0.996 | 0.9984 | 0.9975 |
| physics_07_28-1-19-1 | 0.9240 | 0.9246 | 0.9991 | 0.960 |
| physics_07_28-1-21-1 | 0.9484 | 0.9524 | 0.9956 | 0.973 |
| physics_07_28-1-22-1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_28-1-23-1 | 0.9890 | 1.0000 | 0.9890 | 0.9945 |
| physics_07_28-1-24-1 | 0.8954 | 0.8954 | 0.9998 | 0.9447 |
| physics_07_28-1-29-1 | 0.9812 | 0.9874 | 0.9937 | 0.9905 |
| physics_07_28-1-31-1 | 0.9684 | 0.9742 | 0.9939 | 0.9839 |
| physics_07_28-2-17-2 | 0.8125 | 0.9618 | 0.8344 | 0.8936 |
| physics_07_28-2-18-2 | 0.7721 | 0.9979 | 0.7727 | 0.8709 |
| physics_07_28-2-19-2 | 0.8042 | 0.9276 | 0.8495 | 0.8868 |
| physics_07_28-2-21-2 | 0.8076 | 0.9809 | 0.8165 | 0.8912 |
| physics_07_28-2-22-2 | 0.8549 | 0.9880 | 0.8627 | 0.9211 |
| physics_07_28-2-23-2 | 0.8658 | 0.9935 | 0.8682 | 0.9266 |
| physics_07_28-2-24-2 | 0.7067 | 0.8782 | 0.7452 | 0.8062 |

Continued...

| F | Accuracy | Precision | Recall | core |
| :---: | :---: | :---: | :---: | :---: |
| physics_07_28-2-29-2 | 0.7458 | 0.9233 | 0.7857 | 0.84 |
| physics_07_28-2-31-2 | 0.8955 | 0.9844 | 0.9057 | 0.94 |
| physics_07_28-3-17-3 | 0.9625 | 1.0000 | 0.9625 | 0.9809 |
| physics_07_28-3-18-3 | 0.8721 | 1.0000 | 0.8721 | 0.9317 |
| physics_07_28-3-19-3 | 0.9015 | 0.9564 | 0.9379 | 0.9470 |
| physics_07_28-3-21-3 | 0.8818 | 0.9497 | 0.9233 | 0.9363 |
| physics_07_28-3-22-3 | 0.9409 | 1.0000 | 0.9409 | 0.9696 |
| physics_07_28-3-23-3 | 0.9577 | 0.9885 | 0.9680 | 0.9782 |
| cs_07_28-3-24-3 | 0.7610 | 0.8832 | 0.8338 | 0.8578 |
| physics_07_28-3-29-3 | 0.8137 | 0.8676 | 0.9179 | 0.8920 |
| physics_07_28-3-31-3 | 0.9250 | 0.9519 | 0.9681 | 0.9599 |
| physics_07_29-1-17-1 | 0.9875 | 0.9875 | 1.0000 | 0.9937 |
| physics_07_29-1-18-1 | 0.9951 | 0.9951 | 1.0000 | 0.9975 |
| physics_07_29-1-19-1 | 0.92 | 0.9228 | 1.0000 | 0.9 |
| physics_07_29-1-21-1 | 0.9510 | 0.9518 | 0.9992 | 0.97 |
| physics_07_29-1-22-1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_29-1-23-1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_29-1-24-1 | 0.8936 | 0.8936 | 1.0000 | 0.9438 |
| physics_07_29-1-28-1 | 0.9077 | 0.9082 | 0.9993 | 0.9516 |
| physics_07_29-1-31-1 | 0.9724 | 0.9724 | 1.0000 | 0.9860 |
| physics_07_29-2-17-2 | 0.9438 | 0.9438 | 1.0000 | 0.971 |
| physics_07_29-2-18-2 | 0.9951 | 0.9951 | 1.0000 | 0.9975 |
| physics_07_29-2-19-2 | 0.9031 | 0.9051 | 0.9973 | 0.9490 |
| physics_07_29-2-21-2 | 0.9637 | 0.9656 | 0.9979 | 0.9815 |
| physics_07_29-2-22-2 | 0.9807 | 0.9820 | 0.9987 | 0.9903 |
| physics_07_29-2-23-2 | 0.9761 | 0.9761 | 1.0000 | 0.9879 |
| physics_07_29-2-24-2 | 0.8163 | 0.8209 | 0.9921 | 0.898 |
| physics_07_29-2-28-2 | 0.6528 | 0.6558 | 0.9854 | 0.7875 |
| physics_07_29-2-31-2 | 0.9625 | 0.9625 | 1.0000 | 0.9809 |
| physics_07_29-3-17-3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_29-3-18-3 | 0.9574 | 1.0000 | 0.9574 | 0.9782 |
| physics_07_29-3-19-3 | 0.9349 | 0.9470 | 0.9859 | 0.9660 |
| Continued... |  |  |  |  |


| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| physics_07_29-3-21-3 | 0.9214 | 0.9427 | 0.9758 | 0.9589 |
| physics_07_29-3-22-3 | 0.9859 | 1.0000 | 0.9859 | 0.9929 |
| physics_07_29-3-23-3 | 0.9688 | 0.9777 | 0.9906 | 0.9841 |
| physics_07_29-3-24-3 | 0.8232 | 0.8685 | 0.9374 | 0.9016 |
| physics_07_29-3-28-3 | 0.6958 | 0.7077 | 0.9467 | 0.8099 |
| physics_07_29-3-31-3 | 0.9310 | 0.9307 | 1.0000 | 0.9641 |
| physics_07_31-1-17-1 | 0.9875 | 0.9875 | 1.0000 | 0.9937 |
| physics_07_31-1-18-1 | 0.9836 | 0.9950 | 0.9885 | 0.9917 |
| physics_07_31-1-19-1 | 0.9228 | 0.9228 | 1.0000 | 0.9598 |
| physics_07_31-1-21-1 | 0.9506 | 0.9519 | 0.9985 | 0.9747 |
| physics_07_31-1-22-1 | 0.9987 | 1.0000 | 0.9987 | 0.9994 |
| physics_07_31-1-23-1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_31-1-24-1 | 0.8932 | 0.8956 | 0.9966 | 0.9434 |
| physics_07_31-1-28-1 | 0.9032 | 0.9093 | 0.9924 | 0.9490 |
| physics_07_31-1-29-1 | 0.9860 | 0.9872 | 0.9987 | 0.9929 |
| physics_07_31-2-17-2 | 0.9438 | 0.9438 | 1.0000 | 0.9711 |
| physics_07_31-2-18-2 | 0.9770 | 0.9950 | 0.9819 | 0.9884 |
| physics_07_31-2-19-2 | 0.9055 | 0.9076 | 0.9969 | 0.9501 |
| physics_07_31-2-21-2 | 0.9587 | 0.9655 | 0.9927 | 0.9789 |
| physics_07_31-2-22-2 | 0.9782 | 0.9820 | 0.9961 | 0.9890 |
| physics_07_31-2-23-2 | 0.9761 | 0.9761 | 1.0000 | 0.9879 |
| physics_07_31-2-24-2 | 0.8095 | 0.8227 | 0.9780 | 0.8937 |
| physics_07_31-2-28-2 | 0.6430 | 0.6549 | 0.9579 | 0.7779 |
| physics_07_31-2-29-2 | 0.9058 | 0.9123 | 0.9917 | 0.9504 |
| physics_07_31-3-17-3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_31-3-18-3 | 0.9590 | 1.0000 | 0.9590 | 0.9791 |
| physics_07_31-3-19-3 | 0.9304 | 0.9489 | 0.9786 | 0.9635 |
| physics_07_31-3-21-3 | 0.9292 | 0.9437 | 0.9835 | 0.9632 |
| physics_07_31-3-22-3 | 0.9884 | 1.0000 | 0.9884 | 0.9942 |
| physics_07_31-3-23-3 | 0.9743 | 0.9779 | 0.9962 | 0.9870 |
| physics_07_31-3-24-3 | 0.8306 | 0.8668 | 0.9500 | 0.9065 |
| physics_07_31-3-28-3 | 0.6713 | 0.6947 | 0.9275 | 0.7944 |
| phy 07 |  |  |  |  |

Continued...

| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| physics_07_31-3-29-3 | 0.8325 | 0.8439 | 0.9818 | 0.9077 |
|  |  |  |  |  |
| Min | 0.6409 | 0.6515 | 0.7452 | 0.7722 |
| Max | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Avg | 0.9202 | 0.9322 | 0.9852 | 0.9556 |
| Std Dev | 0.0881 | 0.0840 | 0.0370 | 0.0532 |

## F. 4 \#\#physics, SAME SESSION, DIFFERENT ANNOTATOR

| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| physics_07_17-1-2 | 0.9438 | 0.9438 | 1.0000 | 0.9711 |
| physics_07_17-1-3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_17-2-1 | 0.9750 | 0.9873 | 0.9873 | 0.9873 |
| physics_07_17-2-3 | 0.9875 | 1.0000 | 0.9875 | 0.9937 |
| physics_07_17-3-1 | 0.9875 | 0.9875 | 1.0000 | 0.9937 |
| physics_07_17-3-2 | 0.9438 | 0.9438 | 1.0000 | 0.9711 |
| physics_07_18-1-2 | 0.9951 | 0.9951 | 1.0000 | 0.9975 |
| physics_07_18-1-3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_18-2-1 | 0.9951 | 0.9951 | 1.0000 | 0.9975 |
| physics_07_18-2-3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_18-3-1 | 0.9951 | 0.9951 | 1.0000 | 0.9975 |
| physics_07_18-3-2 | 0.9951 | 0.9951 | 1.0000 | 0.9975 |
| physics_07_19-1-2 | 0.9007 | 0.9075 | 0.9911 | 0.9474 |
| physics_07_19-1-3 | 0.9361 | 0.9437 | 0.9910 | 0.9668 |
| physics_07_19-2-1 | 0.9168 | 0.9293 | 0.9847 | 0.9562 |
| physics_07_19-2-3 | 0.9389 | 0.9490 | 0.9880 | 0.9681 |
| physics_07_19-3-1 | 0.9228 | 0.9259 | 0.9961 | 0.9597 |
| physics_07_19-3-2 | 0.9103 | 0.9097 | 1.0000 | 0.9527 |
| physics_07_21-1-2 | 0.9651 | 0.9651 | 1.0000 | 0.9822 |
| physics_07_21-1-3 | 0.9409 | 0.9409 | 1.0000 | 0.9696 |
|  |  |  | Continued... |  |


| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| physics_07_21-2-1 | 0.9516 | 0.9518 | 0.9998 | 0.9752 |
| physics_07_21-2-3 | 0.9407 | 0.9409 | 0.9998 | 0.9695 |
| physics_07_21-3-1 | 0.9510 | 0.9518 | 0.9992 | 0.9749 |
| physics_07_21-3-2 | 0.9643 | 0.9651 | 0.9992 | 0.9818 |
| physics_07_22-1-2 | 0.9820 | 0.9820 | 1.0000 | 0.9909 |
| physics_07_22-1-3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_22-2-1 | 0.9987 | 1.0000 | 0.9987 | 0.9994 |
| physics_07_22-2-3 | 0.9987 | 1.0000 | 0.9987 | 0.9994 |
| physics_07_22-3-1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_22-3-2 | 0.9820 | 0.9820 | 1.0000 | 0.9909 |
| physics_07_23-1-2 | 0.9761 | 0.9761 | 1.0000 | 0.9879 |
| physics_07_23-1-3 | 0.9779 | 0.9779 | 1.0000 | 0.9888 |
| physics_07_23-2-1 | 0.9963 | 1.0000 | 0.9963 | 0.9982 |
| physics_07_23-2-3 | 0.9816 | 0.9815 | 1.0000 | 0.9907 |
| physics_07_23-3-1 | 0.9963 | 1.0000 | 0.9963 | 0.9982 |
| physics_07_23-3-2 | 0.9798 | 0.9797 | 1.0000 | 0.9897 |
| physics_07_24-1-2 | 0.8208 | 0.8210 | 0.9989 | 0.9013 |
| physics_07_24-1-3 | 0.8664 | 0.8668 | 0.9990 | 0.9282 |
| physics_07_24-2-1 | 0.8770 | 0.8965 | 0.9750 | 0.9341 |
| physics_07_24-2-3 | 0.8503 | 0.8677 | 0.9755 | 0.9185 |
| physics_07_24-3-1 | 0.8957 | 0.8960 | 0.9993 | 0.9448 |
| physics_07_24-3-2 | 0.8206 | 0.8208 | 0.9991 | 0.9012 |
| physics_07_28-1-2 | 0.6600 | 0.6576 | 0.9995 | 0.7933 |
| physics_07_28-1-3 | 0.6917 | 0.6896 | 0.9996 | 0.8161 |
| physics_07_28-2-1 | 0.7311 | 0.9477 | 0.7451 | 0.8343 |
| physics_07_28-2-3 | 0.7177 | 0.7816 | 0.8154 | 0.7981 |
| physics_07_28-3-1 | 0.7876 | 0.9416 | 0.8168 | 0.8748 |
| physics_07_28-3-2 | 0.7036 | 0.7262 | 0.8764 | 0.7943 |
| physics_07_29-1-2 | 0.9093 | 0.9093 | 1.0000 | 0.9525 |
| physics_07_29-1-3 | 0.8387 | 0.8387 | 1.0000 | 0.9123 |
| physics_07_29-2-1 | 0.9777 | 0.9874 | 0.9901 | 0.9887 |
| physics_07_29-2-3 | 0.8462 | 0.8459 | 0.9985 | 0.9159 |
| phy |  |  | 0 |  |
| phy | 0.9 |  |  |  |

Continued...

| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| physics_07_29-3-1 | 0.9416 | 0.9884 | 0.9521 | 0.9699 |
| physics_07_29-3-2 | 0.9023 | 0.9268 | 0.9692 | 0.9475 |
| physics_07_31-1-2 | 0.9724 | 0.9740 | 0.9980 | 0.9858 |
| physics_07_31-1-3 | 0.9369 | 0.9380 | 0.9979 | 0.9670 |
| physics_07_31-2-1 | 0.9822 | 0.9859 | 0.9959 | 0.9909 |
| physics_07_31-2-3 | 0.9408 | 0.9418 | 0.9979 | 0.9690 |
| physics_07_31-3-1 | 0.9803 | 0.9899 | 0.9899 | 0.9899 |
| physics_07_31-3-2 | 0.9783 | 0.9838 | 0.9939 | 0.9888 |
|  |  |  |  |  |
| Min | 0.6600 | 0.6576 | 0.7451 | 0.7933 |
| Max | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Avg | 0.9259 | 0.9371 | 0.9833 | 0.9577 |
| Std Dev | 0.0864 | 0.0775 | 0.0481 | 0.0544 |

## F. 5 \#python, SAME ANNOTATOR, DIFFERENT SESSION

| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| python_07_17-1-18-1 | 0.7304 | 0.7671 | 0.8481 | 0.8056 |
| python_07_17-1-19-1 | 0.7043 | 0.7574 | 0.8124 | 0.7839 |
| python_07_17-1-21-1 | 0.6988 | 0.7631 | 0.8195 | 0.7903 |
| python_07_17-1-22-1 | 0.7014 | 0.6421 | 0.8526 | 0.7325 |
| python_07_17-1-23-1 | 0.7436 | 0.7394 | 0.8711 | 0.7999 |
| python_07_17-1-24-1 | 0.6566 | 0.5902 | 0.8736 | 0.7045 |
| python_07_17-1-28-1 | 0.7150 | 0.7975 | 0.7676 | 0.7823 |
| python_07_17-1-29-1 | 0.7525 | 0.7498 | 0.8722 | 0.8064 |
| python_07_17-1-31-1 | 0.7051 | 0.7253 | 0.8467 | 0.7813 |
| python_07_17-2-18-2 | 0.7324 | 0.7316 | 0.9087 | 0.8106 |
| python_07_17-2-19-2 | 0.6796 | 0.6855 | 0.8738 | 0.7683 |
| python_07_17-2-21-2 | 0.7194 | 0.7375 | 0.8958 | 0.8090 |
| python_07_17-2-22-2 | 0.6832 | 0.6255 | 0.8886 | 0.7342 |
|  |  |  | Continued... |  |


| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| python_07_17-2-23-2 | 0.7282 | 0.7503 | 0.8742 | 0.8076 |
| python_07_17-2-24-2 | 0.6384 | 0.5595 | 0.9332 | 0.6996 |
| python_07_17-2-28-2 | 0.7169 | 0.6725 | 0.8955 | 0.7682 |
| python_07_17-2-29-2 | 0.7292 | 0.7174 | 0.8977 | 0.7975 |
| python_07_17-2-31-2 | 0.7039 | 0.7077 | 0.8841 | 0.7861 |
| python_07_17-3-18-3 | 0.7385 | 0.7577 | 0.8755 | 0.8123 |
| python_07_17-3-19-3 | 0.6968 | 0.6802 | 0.8745 | 0.7653 |
| python_07_17-3-21-3 | 0.7273 | 0.7162 | 0.9070 | 0.8004 |
| python_07_17-3-22-3 | 0.7119 | 0.6594 | 0.8629 | 0.7476 |
| python_07_17-3-23-3 | 0.7352 | 0.7215 | 0.8857 | 0.7952 |
| python_07_17-3-24-3 | 0.6573 | 0.5907 | 0.8916 | 0.7106 |
| python_07_17-3-28-3 | 0.7453 | 0.7026 | 0.8853 | 0.7834 |
| python_07_17-3-29-3 | 0.7386 | 0.7298 | 0.8756 | 0.7961 |
| python_07_17-3-31-3 | 0.7029 | 0.6693 | 0.9033 | 0.7689 |
| python_07_18-1-17-1 | 0.7261 | 0.7875 | 0.8048 | 0.7961 |
| python_07_18-1-19-1 | 0.7030 | 0.7765 | 0.7725 | 0.7745 |
| python_07_18-1-21-1 | 0.7022 | 0.7773 | 0.7989 | 0.7880 |
| python_07_18-1-22-1 | 0.7555 | 0.7121 | 0.8229 | 0.7635 |
| python_07_18-1-23-1 | 0.7709 | 0.7759 | 0.8583 | 0.8150 |
| python_07_18-1-24-1 | 0.6882 | 0.6200 | 0.8639 | 0.7219 |
| python_07_18-1-28-1 | 0.7326 | 0.8321 | 0.7507 | 0.7893 |
| python_07_18-1-29-1 | 0.7897 | 0.8021 | 0.8553 | 0.8278 |
| python_07_18-1-31-1 | 0.7446 | 0.7654 | 0.8499 | 0.8055 |
| python_07_18-2-17-2 | 0.7535 | 0.8491 | 0.7863 | 0.8165 |
| python_07_18-2-19-2 | 0.6996 | 0.7470 | 0.7648 | 0.7558 |
| python_07_18-2-21-2 | 0.7471 | 0.8038 | 0.8185 | 0.8111 |
| python_07_18-2-22-2 | 0.7680 | 0.7519 | 0.7891 | 0.7701 |
| python_07_18-2-23-2 | 0.7522 | 0.8289 | 0.7814 | 0.8045 |
| python_07_18-2-24-2 | 0.7467 | 0.6648 | 0.8843 | 0.7590 |
| python_07_18-2-28-2 | 0.7904 | 0.7797 | 0.8360 | 0.8069 |
| python_07_18-2-29-2 | 0.7827 | 0.8179 | 0.8159 | 0.8169 |
| python_07_18-2-31-2 | 0.7523 | 0.7777 | 0.8366 | 0.8061 |
|  |  |  | Continued.. |  |


| File | Accuracy | Precision | Recall | F-score |
| :---: | :---: | :---: | :---: | :---: |
| python_07_18-3-17-3 | 0.7261 | 0.7908 | 0.7937 | 0.7922 |
| python_07_18-3-19-3 | 0.7133 | 0.7127 | 0.8252 | 0.7648 |
| python_07_18-3-21-3 | 0.7521 | 0.7520 | 0.8785 | 0.8104 |
| python_07_18-3-22-3 | 0.7584 | 0.7269 | 0.8193 | 0.7703 |
| python_07_18-3-23-3 | 0.7705 | 0.7706 | 0.8609 | 0.8132 |
| python_07_18-3-24-3 | 0.7025 | 0.6378 | 0.8548 | 0.7306 |
| python_07_18-3-28-3 | 0.7821 | 0.7553 | 0.8598 | 0.8042 |
| python_07_18-3-29-3 | 0.7843 | 0.7932 | 0.8519 | 0.8215 |
| python_07_18-3-31-3 | 0.7319 | 0.7038 | 0.8804 | 0.7823 |
| python_07_19-1-17-1 | 0.7181 | 0.7745 | 0.8120 | 0.7928 |
| python_07_19-1-18-1 | 0.7452 | 0.7750 | 0.8640 | 0.8171 |
| python_07_19-1-21-1 | 0.7094 | 0.7674 | 0.8328 | 0.7988 |
| python_07_19-1-22-1 | 0.7210 | 0.6590 | 0.8666 | 0.7487 |
| python_07_19-1-23-1 | 0.7474 | 0.7408 | 0.8775 | 0.8034 |
| python_07_19-1-24-1 | 0.6740 | 0.6046 | 0.8785 | 0.7163 |
| python_07_19-1-28-1 | 0.7406 | 0.8202 | 0.7826 | 0.8010 |
| python_07_19-1-29-1 | 0.7648 | 0.7654 | 0.8681 | 0.8135 |
| python_07_19-1-31-1 | 0.7190 | 0.7390 | 0.8477 | 0.7896 |
| python_07_19-2-17-2 | 0.7502 | 0.8478 | 0.7822 | 0.8137 |
| python_07_19-2-18-2 | 0.7659 | 0.7990 | 0.8398 | 0.8189 |
| python_07_19-2-21-2 | 0.7385 | 0.7947 | 0.8169 | 0.8056 |
| python_07_19-2-22-2 | 0.7737 | 0.7518 | 0.8067 | 0.7783 |
| python_07_19-2-23-2 | 0.7490 | 0.8287 | 0.7755 | 0.8012 |
| python_07_19-2-24-2 | 0.7442 | 0.6625 | 0.8827 | 0.7569 |
| python_07_19-2-28-2 | 0.7835 | 0.7749 | 0.8267 | 0.8000 |
| python_07_19-2-29-2 | 0.7710 | 0.8100 | 0.8028 | 0.8064 |
| python_07_19-2-31-2 | 0.7496 | 0.7800 | 0.8262 | 0.8024 |
| python_07_19-3-17-3 | 0.7285 | 0.8286 | 0.7405 | 0.7821 |
| python_07_19-3-18-3 | 0.7465 | 0.8267 | 0.7691 | 0.7968 |
| python_07_19-3-21-3 | 0.7753 | 0.8035 | 0.8302 | 0.8166 |
| python_07_19-3-22-3 | 0.7824 | 0.7901 | 0.7625 | 0.7761 |
| python_07_19-3-23-3 | 0.7819 | 0.8289 | 0.7866 | 0.8072 |


| File | Accuracy | Precision | Recall | score |
| :---: | :---: | :---: | :---: | :---: |
| python_07_19-3-24-3 | 0.7390 | 0.6948 | 0.7965 | 0.7422 |
| python_07_19-3-28-3 | 0.7979 | 0.8128 | 0.7949 | 0.8037 |
| python_07_19-3-29-3 | 0.7926 | 0.8520 | 0.7795 | 0.8141 |
| python_07_19-3-31-3 | 0.7416 | 0.7479 | 0.7960 | 0.7712 |
| python_07_21-1-17-1 | 0.7105 | 0.7475 | 0.8519 | 0.7963 |
| python_07_21-1-18-1 | 0.7237 | 0.7448 | 0.8830 | 0.8080 |
| python_07_21-1-19-1 | 0.7041 | 0.7367 | 0.8588 | 0.7930 |
| python_07_21-1-22-1 | 0.6948 | 0.6284 | 0.8902 | 0.7367 |
| python_07_21-1-23-1 | 0.7189 | 0.7036 | 0.9019 | 0.7905 |
| python_07_21-1-24-1 | 0.6480 | 0.5790 | 0.9110 | 0.7080 |
| python_07_21-1-28-1 | 0.7382 | 0.7956 | 0.8177 | 0.8065 |
| python_07_21-1-29-1 | 0.7468 | 0.7374 | 0.8876 | 0.8056 |
| python_07_21-1-31-1 | 0.7118 | 0.7206 | 0.8765 | 0.7910 |
| python_07_21-2-17-2 | 0.7474 | 0.8406 | 0.7870 | 0.8129 |
| python_07_21-2-18-2 | 0.7565 | 0.7859 | 0.8433 | 0.8136 |
| python_07_21-2-19-2 | 0.6943 | 0.7341 | 0.7795 | 0.7561 |
| python_07_21-2-22-2 | 0.7578 | 0.7337 | 0.7976 | 0.7643 |
| python_07_21-2-23-2 | 0.7418 | 0.8114 | 0.7872 | 0.7991 |
| python_07_21-2-24-2 | 0.7370 | 0.6505 | 0.9014 | 0.7557 |
| python_07_21-2-28-2 | 0.7793 | 0.7648 | 0.8354 | 0.7986 |
| python_07_21-2-29-2 | 0.7716 | 0.8042 | 0.8136 | 0.8089 |
| python_07_21-2-31-2 | 0.7387 | 0.7683 | 0.8240 | 0.7952 |
| python_07_21-3-17-3 | 0.7247 | 0.8148 | 0.7527 | 0.7825 |
| python_07_21-3-18-3 | 0.7490 | 0.8141 | 0.7928 | 0.8033 |
| python_07_21-3-19-3 | 0.7172 | 0.7383 | 0.7737 | 0.7556 |
| python_07_21-3-22-3 | 0.7828 | 0.7851 | 0.7720 | 0.7785 |
| python_07_21-3-23-3 | 0.7764 | 0.8085 | 0.8058 | 0.8071 |
| python_07_21-3-24-3 | 0.7377 | 0.6871 | 0.8154 | 0.7458 |
| python_07_21-3-28-3 | 0.8110 | 0.8189 | 0.8177 | 0.8183 |
| python_07_21-3-29-3 | 0.7884 | 0.8323 | 0.7977 | 0.8146 |
| python_07_21-3-31-3 | 0.7483 | 0.7416 | 0.8287 | 0.7827 |
| python_07_22-1-17-1 | 0.7219 | 0.8517 | 0.7037 | 0.7707 |

Continued...

| File | Accuracy | Precision | Recall | -score |
| :---: | :---: | :---: | :---: | :---: |
| python_07_22-1-18-1 | 0.7198 | 0.8683 | 0.6773 | 0.7610 |
| python_07_22-1-19-1 | 0.6800 | 0.8584 | 0.6171 | 0.7180 |
| python_07_22-1-21-1 | 0.6901 | 0.8370 | 0.6861 | 0.7541 |
| python_07_22-1-23-1 | 0.7706 | 0.8689 | 0.7184 | 0.7865 |
| python_07_22-1-24-1 | 0.7644 | 0.7423 | 0.7614 | 0.7517 |
| python_07_22-1-28-1 | 0.6947 | 0.8846 | 0.6237 | 0.7316 |
| python_07_22-1-29-1 | 0.7897 | 0.8951 | 0.7297 | 0.8040 |
| python_07_22-1-31-1 | 0.7182 | 0.8228 | 0.6971 | 0.7547 |
| python_07_22-2-17-2 | 0.7029 | 0.9013 | 0.6445 | 0.7516 |
| python_07_22-2-18-2 | 0.7244 | 0.8889 | 0.6431 | 0.7463 |
| python_07_22-2-19-2 | 0.6876 | 0.8505 | 0.5897 | 0.6965 |
| python_07_22-2-21-2 | 0.7178 | 0.8604 | 0.6859 | 0.7633 |
| python_07_22-2-23-2 | 0.7142 | 0.9120 | 0.6219 | 0.7395 |
| python_07_22-2-24-2 | 0.7894 | 0.7715 | 0.7577 | 0.7645 |
| python_07_22-2-28-2 | 0.7782 | 0.8464 | 0.7043 | 0.7689 |
| python_07_22-2-29-2 | 0.7517 | 0.8963 | 0.6582 | 0.7590 |
| python_07_22-2-31-2 | 0.7160 | 0.8498 | 0.6541 | 0.7392 |
| python_07_22-3-17-3 | 0.7129 | 0.8322 | 0.7060 | 0.7639 |
| python_07_22-3-18-3 | 0.7344 | 0.8461 | 0.7203 | 0.7781 |
| python_07_22-3-19-3 | 0.7254 | 0.7816 | 0.7132 | 0.7459 |
| python_07_22-3-21-3 | 0.7731 | 0.8229 | 0.7947 | 0.8085 |
| python_07_22-3-23-3 | 0.7834 | 0.8582 | 0.7511 | 0.8010 |
| python_07_22-3-24-3 | 0.7477 | 0.7190 | 0.7638 | 0.7407 |
| python_07_22-3-28-3 | 0.7929 | 0.8263 | 0.7624 | 0.7931 |
| python_07_22-3-29-3 | 0.7901 | 0.8765 | 0.7447 | 0.8053 |
| python_07_22-3-31-3 | 0.7376 | 0.7623 | 0.7562 | 0.7592 |
| python_07_23-1-17-1 | 0.7233 | 0.8237 | 0.7422 | 0.7808 |
| python_07_23-1-18-1 | 0.7430 | 0.8253 | 0.7736 | 0.7986 |
| python_07_23-1-19-1 | 0.7109 | 0.8217 | 0.7179 | 0.7663 |
| python_07_23-1-21-1 | 0.6929 | 0.8036 | 0.7366 | 0.7686 |
| python_07_23-1-22-1 | 0.7796 | 0.7693 | 0.7721 | 0.7707 |
| python_07_23-1-24-1 | 0.7411 | 0.6886 | 0.8164 | 0.7471 |

Continued...

| File | Accuracy | Precision | Recall | score |
| :---: | :---: | :---: | :---: | :---: |
| python_07_23-1-28-1 | 0.7190 | 0.8694 | 0.6810 | 0.7638 |
| python_07_23-1-29-1 | 0.7922 | 0.8462 | 0.7925 | 0.8185 |
| python_07_23-1-31-1 | 0.7341 | 0.7970 | 0.7681 | 0.7823 |
| python_07_23-2-17-2 | 0.7545 | 0.8259 | 0.8209 | 0.8234 |
| python_07_23-2-18-2 | 0.7620 | 0.7752 | 0.8765 | 0.8227 |
| python_07_23-2-19-2 | 0.6972 | 0.7190 | 0.8238 | 0.7678 |
| python_07_23-2-21-2 | 0.7301 | 0.7678 | 0.8501 | 0.8069 |
| python_07_23-2-22-2 | 0.7496 | 0.7082 | 0.8358 | 0.7667 |
| python_07_23-2-24-2 | 0.7101 | 0.6207 | 0.9184 | 0.7408 |
| python_07_23-2-28-2 | 0.7704 | 0.7414 | 0.8624 | 0.7974 |
| python_07_23-2-29-2 | 0.7757 | 0.7857 | 0.8560 | 0.8193 |
| python_07_23-2-31-2 | 0.7451 | 0.7586 | 0.8591 | 0.8058 |
| python_07_23-3-17-3 | 0.7190 | 0.8160 | 0.7398 | 0.7760 |
| python_07_23-3-18-3 | 0.7405 | 0.8152 | 0.7742 | 0.7941 |
| python_07_23-3-19-3 | 0.7242 | 0.7547 | 0.7584 | 0.7565 |
| python_07_23-3-21-3 | 0.7710 | 0.7943 | 0.8368 | 0.8150 |
| python_07_23-3-22-3 | 0.7841 | 0.7893 | 0.7684 | 0.7787 |
| python_07_23-3-24-3 | 0.7355 | 0.6862 | 0.8095 | 0.7428 |
| python_07_23-3-28-3 | 0.7934 | 0.8035 | 0.7982 | 0.8009 |
| python_07_23-3-29-3 | 0.7869 | 0.8361 | 0.7889 | 0.8118 |
| python_07_23-3-31-3 | 0.7444 | 0.7466 | 0.8067 | 0.7755 |
| python_07_24-1-17-1 | 0.6944 | 0.8883 | 0.6175 | 0.7286 |
| python_07_24-1-18-1 | 0.6813 | 0.9175 | 0.5672 | 0.7010 |
| python_07_24-1-19-1 | 0.6425 | 0.9137 | 0.5064 | 0.6516 |
| python_07_24-1-21-1 | 0.6677 | 0.8772 | 0.6050 | 0.7161 |
| python_07_24-1-22-1 | 0.7958 | 0.8925 | 0.6527 | 0.7540 |
| python_07_24-1-23-1 | 0.7576 | 0.9284 | 0.6371 | 0.7556 |
| python_07_24-1-28-1 | 0.6531 | 0.9087 | 0.5335 | 0.6723 |
| python_07_24-1-29-1 | 0.7670 | 0.9433 | 0.6446 | 0.7658 |
| python_07_24-1-31-1 | 0.6810 | 0.8612 | 0.5808 | 0.6938 |
| python_07_24-2-17-2 | 0.6708 | 0.8986 | 0.5950 | 0.7159 |
| python_07_24-2-18-2 | 0.7201 | 0.9085 | 0.6181 | 0.7356 |

Continued...

| File | Accuracy | Precision | Recall | core |
| :---: | :---: | :---: | :---: | :---: |
| python_07_24-2-19-2 | 0.6746 | 0.8650 | 0.5505 | 0.6728 |
| python_07_24-2-21-2 | 0.7233 | 0.8984 | 0.6573 | 0.7591 |
| python_07_24-2-22-2 | 0.7738 | 0.8770 | 0.6288 | 0.7324 |
| python_07_24-2-23-2 | 0.6975 | 0.9192 | 0.5879 | 0.7172 |
| python_07_24-2-28-2 | 0.7835 | 0.8973 | 0.6625 | 0.7622 |
| python_07_24-2-29-2 | 0.7430 | 0.9242 | 0.6180 | 0.7407 |
| python_07_24-2-31-2 | 0.7136 | 0.8693 | 0.6293 | 0.7301 |
| python_07_24-3-17-3 | 0.7072 | 0.8799 | 0.6427 | 0.7428 |
| python_07_24-3-18-3 | 0.7173 | 0.8945 | 0.6378 | 0.7447 |
| python_07_24-3-19-3 | 0.7156 | 0.8400 | 0.6136 | 0.7092 |
| python_07_24-3-21-3 | 0.7835 | 0.8807 | 0.7413 | 0.8050 |
| python_07_24-3-22-3 | 0.7885 | 0.8756 | 0.6670 | 0.7572 |
| python_07_24-3-23-3 | 0.7693 | 0.9042 | 0.6740 | 0.7723 |
| python_07_24-3-28-3 | 0.7891 | 0.8766 | 0.6923 | 0.7736 |
| python_07_24-3-29-3 | 0.7570 | 0.8987 | 0.6570 | 0.7591 |
| python_07_24-3-31-3 | 0.7376 | 0.8144 | 0.6739 | 0.7375 |
| python_07_28-1-17-1 | 0.7053 | 0.7368 | 0.8654 | 0.7959 |
| python_07_28-1-18-1 | 0.7318 | 0.7384 | 0.9179 | 0.8185 |
| python_07_28-1-19-1 | 0.7155 | 0.7274 | 0.9104 | 0.8086 |
| python_07_28-1-21-1 | 0.7146 | 0.7430 | 0.8989 | 0.8135 |
| python_07_28-1-22-1 | 0.6733 | 0.6056 | 0.9137 | 0.7284 |
| python_07_28-1-23-1 | 0.7190 | 0.6948 | 0.9312 | 0.7959 |
| python_07_28-1-24-1 | 0.6109 | 0.5505 | 0.9233 | 0.6898 |
| python_07_28-1-29-1 | 0.7379 | 0.7150 | 0.9254 | 0.8067 |
| python_07_28-1-31-1 | 0.7049 | 0.7030 | 0.9101 | 0.7933 |
| python_07_28-2-17-2 | 0.7465 | 0.8548 | 0.7666 | 0.8083 |
| python_07_28-2-18-2 | 0.7635 | 0.8001 | 0.8328 | 0.8161 |
| python_07_28-2-19-2 | 0.6960 | 0.7457 | 0.7585 | 0.7521 |
| python_07_28-2-21-2 | 0.7544 | 0.8158 | 0.8134 | 0.8146 |
| python_07_28-2-22-2 | 0.7621 | 0.7533 | 0.7685 | 0.7608 |
| python_07_28-2-23-2 | 0.7424 | 0.8296 | 0.7614 | 0.7940 |
| python_07_28-2-24-2 | 0.7596 | 0.6818 | 0.8761 | 0.7668 |

Continued...

| File | Accuracy | Precision | Recall | core |
| :---: | :---: | :---: | :---: | :---: |
| python_07_28-2-29-2 | 0.7822 | 0.8242 | 0.8050 | 0.8145 |
| python_07_28-2-31-2 | 0.7464 | 0.7834 | 0.8126 | 0.7978 |
| python_07_28-3-17-3 | 0.7247 | 0.8090 | 0.7613 | 0.7844 |
| python_07_28-3-18-3 | 0.7487 | 0.8063 | 0.8044 | 0.8054 |
| python_07_28-3-19-3 | 0.7102 | 0.7273 | 0.7796 | 0.7525 |
| python_07_28-3-21-3 | 0.7780 | 0.7899 | 0.8607 | 0.8238 |
| python_07_28-3-22-3 | 0.7748 | 0.7727 | 0.7715 | 0.7721 |
| python_07_28-3-23-3 | 0.7775 | 0.8041 | 0.8154 | 0.8097 |
| python_07_28-3-24-3 | 0.7279 | 0.6743 | 0.8188 | 0.7396 |
| python_07_28-3-29-3 | 0.7863 | 0.8220 | 0.8084 | 0.8151 |
| python_07_28-3-31-3 | 0.7498 | 0.7372 | 0.8434 | 0.7867 |
| python_07_29-1-17-1 | 0.7185 | 0.8035 | 0.7628 | 0.7826 |
| python_07_29-1-18-1 | 0.7459 | 0.8126 | 0.7983 | 0.8054 |
| python_07_29-1-19-1 | 0.7034 | 0.7943 | 0.7432 | 0.7679 |
| python_07_29-1-21-1 | 0.7017 | 0.7940 | 0.7689 | 0.7812 |
| python_07_29-1-22-1 | 0.7624 | 0.7351 | 0.7888 | 0.7610 |
| python_07_29-1-23-1 | 0.7757 | 0.7986 | 0.8272 | 0.8126 |
| python_07_29-1-24-1 | 0.7228 | 0.6602 | 0.8414 | 0.7399 |
| python_07_29-1-28-1 | 0.7257 | 0.8523 | 0.7123 | 0.7760 |
| python_07_29-1-31-1 | 0.7374 | 0.7758 | 0.8128 | 0.7939 |
| python_07_29-2-17-2 | 0.7474 | 0.8421 | 0.7849 | 0.8125 |
| python_07_29-2-18-2 | 0.7621 | 0.7904 | 0.8472 | 0.8178 |
| python_07_29-2-19-2 | 0.6956 | 0.7355 | 0.7797 | 0.7569 |
| python_07_29-2-21-2 | 0.7413 | 0.7920 | 0.8273 | 0.8092 |
| python_07_29-2-22-2 | 0.7611 | 0.7369 | 0.8007 | 0.7675 |
| python_07_29-2-23-2 | 0.7470 | 0.8180 | 0.7874 | 0.8024 |
| python_07_29-2-24-2 | 0.7412 | 0.6548 | 0.9017 | 0.7587 |
| python_07_29-2-28-2 | 0.7900 | 0.7730 | 0.8481 | 0.8088 |
| python_07_29-2-31-2 | 0.7473 | 0.7688 | 0.8428 | 0.8041 |
| python_07_29-3-17-3 | 0.7133 | 0.7931 | 0.7635 | 0.7780 |
| python_07_29-3-18-3 | 0.7396 | 0.7939 | 0.8066 | 0.8002 |
| python_07_29-3-19-3 | 0.7134 | 0.7220 | 0.8014 | 0.7596 |

Continued...

| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| python_07_29-3-21-3 | 0.7563 | 0.7616 | 0.8671 | 0.8109 |
| python_07_29-3-22-3 | 0.7625 | 0.7425 | 0.7956 | 0.7681 |
| python_07_29-3-23-3 | 0.7652 | 0.7810 | 0.8274 | 0.8036 |
| python_07_29-3-24-3 | 0.7076 | 0.6461 | 0.8407 | 0.7307 |
| python_07_29-3-28-3 | 0.7871 | 0.7686 | 0.8454 | 0.8052 |
| python_07_29-3-31-3 | 0.7285 | 0.7128 | 0.8437 | 0.7728 |
| python_07_31-1-17-1 | 0.7228 | 0.7801 | 0.8113 | 0.7954 |
| python_07_31-1-18-1 | 0.7537 | 0.7965 | 0.8408 | 0.8181 |
| python_07_31-1-19-1 | 0.7046 | 0.7800 | 0.7697 | 0.7748 |
| python_07_31-1-21-1 | 0.7028 | 0.7811 | 0.7932 | 0.7871 |
| python_07_31-1-22-1 | 0.7544 | 0.7107 | 0.8227 | 0.7626 |
| python_07_31-1-23-1 | 0.7710 | 0.7768 | 0.8568 | 0.8148 |
| python_07_31-1-24-1 | 0.6896 | 0.6240 | 0.8489 | 0.7193 |
| python_07_31-1-28-1 | 0.7300 | 0.8288 | 0.7502 | 0.7875 |
| python_07_31-1-29-1 | 0.7790 | 0.7979 | 0.8383 | 0.8176 |
| python_07_31-2-17-2 | 0.7431 | 0.8327 | 0.7904 | 0.8110 |
| python_07_31-2-18-2 | 0.7637 | 0.7997 | 0.8338 | 0.8164 |
| python_07_31-2-19-2 | 0.6974 | 0.7498 | 0.7535 | 0.7516 |
| python_07_31-2-21-2 | 0.7350 | 0.7965 | 0.8065 | 0.8015 |
| python_07_31-2-22-2 | 0.7574 | 0.7400 | 0.7822 | 0.7605 |
| python_07_31-2-23-2 | 0.7481 | 0.8252 | 0.7787 | 0.8013 |
| python_07_31-2-24-2 | 0.7300 | 0.6495 | 0.8722 | 0.7446 |
| python_07_31-2-28-2 | 0.7662 | 0.7517 | 0.8265 | 0.7873 |
| python_07_31-2-29-2 | 0.7716 | 0.8094 | 0.8050 | 0.8072 |
| python_07_31-3-17-3 | 0.7138 | 0.8259 | 0.7160 | 0.7670 |
| python_07_31-3-18-3 | 0.7452 | 0.8320 | 0.7592 | 0.7939 |
| python_07_31-3-19-3 | 0.7189 | 0.7604 | 0.7337 | 0.7468 |
| python_07_31-3-21-3 | 0.7849 | 0.8290 | 0.8104 | 0.8196 |
| python_07_31-3-22-3 | 0.7756 | 0.8059 | 0.7194 | 0.7602 |
| python_07_31-3-23-3 | 0.7807 | 0.8297 | 0.7830 | 0.8057 |
| python_07_31-3-24-3 | 0.7444 | 0.7120 | 0.7694 | 0.7396 |
| python_07_31-3-28-3 | 0.7999 | 0.8308 | 0.7728 | 0.8008 |
|  |  |  | Continued.. |  |
| py |  |  |  |  |


| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| python_07_31-3-29-3 | 0.7665 | 0.8395 | 0.7408 | 0.7871 |
|  |  |  |  |  |
| Min | 0.6109 | 0.5505 | 0.5064 | 0.6516 |
| Max | 0.8110 | 0.9433 | 0.9332 | 0.8278 |
| Avg | 0.7377 | 0.7794 | 0.7911 | 0.7780 |
| Std Dev | 0.0343 | 0.0742 | 0.0835 | 0.0331 |

## F. 6 \#python, SAME SESSION, DIFFERENT ANNOTATOR

| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| python_07_17-1-2 | 0.7715 | 0.8337 | 0.8399 | 0.8368 |
| python_07_17-1-3 | 0.7408 | 0.7838 | 0.8368 | 0.8095 |
| python_07_17-2-1 | 0.7308 | 0.7601 | 0.8689 | 0.8109 |
| python_07_17-2-3 | 0.7304 | 0.7558 | 0.8720 | 0.8097 |
| python_07_17-3-1 | 0.7323 | 0.7782 | 0.8348 | 0.8055 |
| python_07_17-3-2 | 0.7644 | 0.8240 | 0.8419 | 0.8329 |
| python_07_18-1-2 | 0.7637 | 0.7828 | 0.8651 | 0.8219 |
| python_07_18-1-3 | 0.7477 | 0.7830 | 0.8436 | 0.8122 |
| python_07_18-2-1 | 0.7534 | 0.8129 | 0.8125 | 0.8127 |
| python_07_18-2-3 | 0.7534 | 0.8037 | 0.8184 | 0.8110 |
| python_07_18-3-1 | 0.7548 | 0.8012 | 0.8348 | 0.8177 |
| python_07_18-3-2 | 0.7679 | 0.7900 | 0.8604 | 0.8237 |
| python_07_19-1-2 | 0.7083 | 0.7189 | 0.8539 | 0.7806 |
| python_07_19-1-3 | 0.7045 | 0.6866 | 0.8773 | 0.7704 |
| python_07_19-2-1 | 0.7259 | 0.8089 | 0.7657 | 0.7867 |
| python_07_19-2-3 | 0.7277 | 0.7342 | 0.8122 | 0.7712 |
| python_07_19-3-1 | 0.7146 | 0.8356 | 0.7068 | 0.7658 |
| python_07_19-3-2 | 0.7160 | 0.7899 | 0.7258 | 0.7565 |
| python_07_21-1-2 | 0.7365 | 0.7509 | 0.9021 | 0.8196 |
| python_07_21-1-3 | 0.7226 | 0.7042 | 0.9309 | 0.8018 |
|  |  |  | Continued... |  |


| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| python_07_21-2-1 | 0.7063 | 0.7875 | 0.7888 | 0.7882 |
| python_07_21-2-3 | 0.7618 | 0.7628 | 0.8778 | 0.8163 |
| python_07_21-3-1 | 0.7057 | 0.8109 | 0.7501 | 0.7793 |
| python_07_21-3-2 | 0.7555 | 0.8269 | 0.7986 | 0.8125 |
| python_07_22-1-2 | 0.7897 | 0.8316 | 0.7182 | 0.7708 |
| python_07_22-1-3 | 0.7909 | 0.8355 | 0.7186 | 0.7727 |
| python_07_22-2-1 | 0.7926 | 0.8425 | 0.6980 | 0.7635 |
| python_07_22-2-3 | 0.7912 | 0.8594 | 0.6906 | 0.7658 |
| python_07_22-3-1 | 0.7870 | 0.7986 | 0.7433 | 0.7699 |
| python_07_22-3-2 | 0.7899 | 0.8163 | 0.7399 | 0.7762 |
| python_07_23-1-2 | 0.7470 | 0.8529 | 0.7397 | 0.7923 |
| python_07_23-1-3 | 0.7869 | 0.8247 | 0.8038 | 0.8141 |
| python_07_23-2-1 | 0.7670 | 0.7682 | 0.8647 | 0.8136 |
| python_07_23-2-3 | 0.7676 | 0.7629 | 0.8701 | 0.8130 |
| python_07_23-3-1 | 0.7860 | 0.8330 | 0.7957 | 0.8139 |
| python_07_23-3-2 | 0.7496 | 0.8577 | 0.7387 | 0.7938 |
| python_07_24-1-2 | 0.8015 | 0.8245 | 0.7115 | 0.7638 |
| python_07_24-1-3 | 0.7647 | 0.8038 | 0.6632 | 0.7268 |
| python_07_24-2-1 | 0.7847 | 0.8262 | 0.6844 | 0.7486 |
| python_07_24-2-3 | 0.7649 | 0.8050 | 0.6621 | 0.7266 |
| python_07_24-3-1 | 0.7838 | 0.8013 | 0.7162 | 0.7563 |
| python_07_24-3-2 | 0.8026 | 0.8029 | 0.7452 | 0.7730 |
| python_07_28-1-2 | 0.7301 | 0.6771 | 0.9267 | 0.7825 |
| python_07_28-1-3 | 0.7325 | 0.6764 | 0.9316 | 0.7838 |
| python_07_28-2-1 | 0.7288 | 0.8694 | 0.6984 | 0.7746 |
| python_07_28-2-3 | 0.8101 | 0.8085 | 0.8324 | 0.8203 |
| python_07_28-3-1 | 0.7229 | 0.8718 | 0.6854 | 0.7675 |
| python_07_28-3-2 | 0.8066 | 0.8149 | 0.8161 | 0.8155 |
| python_07_29-1-2 | 0.7875 | 0.8241 | 0.8165 | 0.8203 |
| python_07_29-1-3 | 0.7988 | 0.8241 | 0.8324 | 0.8282 |
| python_07_29-2-1 | 0.7998 | 0.8230 | 0.8425 | 0.8326 |
| python_07_29-2-3 | 0.7960 | 0.8129 | 0.8441 | 0.8282 |
|  |  |  | Continued.. |  |
|  |  |  |  |  |


| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| python_07_29-3-1 | 0.7933 | 0.8207 | 0.8322 | 0.8264 |
| python_07_29-3-2 | 0.7812 | 0.8131 | 0.8203 | 0.8167 |
| python_07_31-1-2 | 0.7540 | 0.7680 | 0.8599 | 0.8114 |
| python_07_31-1-3 | 0.7372 | 0.7063 | 0.8896 | 0.7874 |
| python_07_31-2-1 | 0.7508 | 0.7800 | 0.8348 | 0.8065 |
| python_07_31-2-3 | 0.7428 | 0.7177 | 0.8734 | 0.7879 |
| python_07_31-3-1 | 0.7344 | 0.8118 | 0.7460 | 0.7775 |
| python_07_31-3-2 | 0.7461 | 0.8162 | 0.7582 | 0.7861 |
|  |  |  |  |  |
| Min | 0.7045 | 0.6764 | 0.6621 | 0.7266 |
| Max | 0.8101 | 0.8718 | 0.9316 | 0.8368 |
| Avg | 0.7583 | 0.7952 | 0.8011 | 0.7944 |
| Std Dev | 0.0297 | 0.0459 | 0.0717 | 0.0264 |

# APPENDIX G: MAXIMUM ENTROPY WITH LDA CLASSIFICATION RESULTS 

The following are the full classification results using the maximum entropy model with LDA augmentation. The results format is the same as in Appendix F.

## G. 1 \#\#iphone, SAME ANNOTATOR, DIFFERENT SESSION

| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| iphone_07_17-1-18-1 | 0.8915 | 0.8915 | 1.0000 | 0.9426 |
| iphone_07_17-1-19-1 | 0.9126 | 0.9126 | 1.0000 | 0.9543 |
| iphone_07_17-1-21-1 | 0.8300 | 0.8300 | 1.0000 | 0.9071 |
| iphone_07_17-1-22-1 | 0.8055 | 0.8055 | 1.0000 | 0.8923 |
| iphone_07_17-1-23-1 | 0.7786 | 0.7786 | 1.0000 | 0.8755 |
| iphone_07_17-1-24-1 | 0.7255 | 0.7255 | 1.0000 | 0.8409 |
| iphone_07_17-1-28-1 | 0.9578 | 0.9578 | 1.0000 | 0.9784 |
| iphone_07_17-1-29-1 | 0.9366 | 0.9366 | 1.0000 | 0.9673 |
| iphone_07_17-1-31-1 | 0.8056 | 0.8056 | 1.0000 | 0.8924 |
| iphone_07_17-2-18-2 | 0.9500 | 0.9501 | 0.9998 | 0.9743 |
| iphone_07_17-2-19-2 | 0.9708 | 0.9715 | 0.9992 | 0.9852 |
| iphone_07_17-2-21-2 | 0.9082 | 0.9088 | 0.9992 | 0.9519 |
| iphone_07_17-2-22-2 | 0.8446 | 0.8459 | 0.9981 | 0.9157 |
| iphone_07_17-2-23-2 | 0.6941 | 0.6941 | 1.0000 | 0.8194 |
| iphone_07_17-2-24-2 | 0.7190 | 0.7192 | 0.9993 | 0.8364 |
| iphone_07_17-2-28-2 | 0.9413 | 0.9413 | 1.0000 | 0.9698 |
| iphone_07_17-2-29-2 | 0.9259 | 0.9259 | 1.0000 | 0.9615 |
| iphone_07_17-2-31-2 | 0.8106 | 0.8133 | 0.9959 | 0.8954 |
| iphone_07_17-3-18-3 | 0.8028 | 0.8028 | 1.0000 | 0.8906 |
| iphone_07_17-3-19-3 | 0.8402 | 0.8402 | 1.0000 | 0.9132 |
| iphone_07_17-3-21-3 | 0.8483 | 0.8483 | 1.0000 | 0.9179 |
| iphone_07_17-3-22-3 | 0.7619 | 0.7619 | 1.0000 | 0.8648 |
| ipontinued.. |  |  |  |  |


| File | Accuracy | Precision | Recall | score |
| :---: | :---: | :---: | :---: | :---: |
| iphone_07_17-3-23-3 | 0.7097 | 0.7097 | 1.0000 | 0.8302 |
| iphone_07_17-3-24-3 | 0.7436 | 0.7436 | 1.0000 | 0.8530 |
| iphone_07_17-3-28-3 | 0.9635 | 0.9635 | 1.0000 | 0.9814 |
| iphone_07_17-3-29-3 | 0.8728 | 0.8728 | 1.0000 | 0.9321 |
| iphone_07_17-3-31-3 | 0.7940 | 0.7940 | 1.0000 | 0.8852 |
| iphone_07_18-1-17-1 | 0.9854 | 0.9854 | 1.0000 | 0.9927 |
| iphone_07_18-1-19-1 | 0.9000 | 0.9144 | 0.9823 | 0.9471 |
| iphone_07_18-1-21-1 | 0.8293 | 0.8350 | 0.9900 | 0.9059 |
| iphone_07_18-1-22-1 | 0.8039 | 0.8119 | 0.9846 | 0.8900 |
| iphone_07_18-1-23-1 | 0.7828 | 0.7823 | 0.9991 | 0.8775 |
| iphone_07_18-1-24-1 | 0.7296 | 0.7317 | 0.9904 | 0.8416 |
| iphone_07_18-1-28-1 | 0.9578 | 0.9598 | 0.9978 | 0.9784 |
| iphone_07_18-1-29-1 | 0.9351 | 0.9420 | 0.9918 | 0.9663 |
| iphone_07_18-1-31-1 | 0.8056 | 0.8056 | 1.0000 | 0.8924 |
| iphone_07_18-2-17-2 | 0.9549 | 0.9549 | 1.0000 | 0.9769 |
| iphone_07_18-2-19-2 | 0.9712 | 0.9715 | 0.9997 | 0.9854 |
| iphone_07_18-2-21-2 | 0.9082 | 0.9082 | 1.0000 | 0.9519 |
| iphone_07_18-2-22-2 | 0.8430 | 0.8458 | 0.9960 | 0.9148 |
| iphone_07_18-2-23-2 | 0.6927 | 0.6937 | 0.9980 | 0.8184 |
| iphone_07_18-2-24-2 | 0.7217 | 0.7211 | 0.9997 | 0.8378 |
| iphone_07_18-2-28-2 | 0.9406 | 0.9406 | 1.0000 | 0.9694 |
| iphone_07_18-2-29-2 | 0.9259 | 0.9259 | 1.0000 | 0.9615 |
| iphone_07_18-2-31-2 | 0.8140 | 0.8140 | 1.0000 | 0.8974 |
| iphone_07_18-3-17-3 | 0.9563 | 0.9618 | 0.9939 | 0.9776 |
| iphone_07_18-3-19-3 | 0.8392 | 0.8641 | 0.9595 | 0.9093 |
| iphone_07_18-3-21-3 | 0.8369 | 0.8653 | 0.9567 | 0.9087 |
| iphone_07_18-3-22-3 | 0.7657 | 0.7848 | 0.9541 | 0.8612 |
| iphone_07_18-3-23-3 | 0.7289 | 0.7242 | 0.9980 | 0.8394 |
| iphone_07_18-3-24-3 | 0.7487 | 0.7627 | 0.9612 | 0.8505 |
| iphone_07_18-3-28-3 | 0.9628 | 0.9682 | 0.9941 | 0.9810 |
| iphone_07_18-3-29-3 | 0.8723 | 0.8915 | 0.9719 | 0.9300 |
| iphone_07_18-3-31-3 | 0.8023 | 0.8017 | 0.9979 | 0.8891 |
| Continued... |  |  |  |  |


| File | Accuracy | Precision | Recall | score |
| :---: | :---: | :---: | :---: | :---: |
| iphone_07_19-1-17-1 | 0.9854 | 0.9854 | 1.0000 | 0.9927 |
| iphone_07_19-1-18-1 | 0.8918 | 0.8921 | 0.9995 | 0.9427 |
| iphone_07_19-1-21-1 | 0.8300 | 0.8305 | 0.9991 | 0.9071 |
| iphone_07_19-1-22-1 | 0.8064 | 0.8066 | 0.9993 | 0.8927 |
| iphone_07_19-1-23-1 | 0.7800 | 0.7797 | 1.0000 | 0.8762 |
| iphone_07_19-1-24-1 | 0.7284 | 0.7281 | 0.9986 | 0.8422 |
| iphone_07_19-1-28-1 | 0.9557 | 0.9577 | 0.9978 | 0.9773 |
| iphone_07_19-1-29-1 | 0.9366 | 0.9366 | 1.0000 | 0.9673 |
| iphone_07_19-1-31-1 | 0.8056 | 0.8056 | 1.0000 | 0.8924 |
| iphone_07_19-2-17-2 | 0.9549 | 0.9549 | 1.0000 | 0.9769 |
| iphone_07_19-2-18 | 0.9501 | 0.9501 | 1.0000 | 0.9744 |
| iphone_07_19-2-21-2 | 0.9084 | 0.9086 | 0.9997 | 0.9520 |
| iphone_07_19-2-22-2 | 0.8464 | 0.8465 | 0.9999 | 0.9168 |
| iphone_07_19-2-23-2 | 0.6941 | 0.6944 | 0.9990 | 0.8193 |
| iphone_07_19-2-24-2 | 0.7194 | 0.7195 | 0.9993 | 0.8366 |
| iphone_07_19-2-28-2 | 0.9399 | 0.9406 | 0.9992 | 0.9690 |
| iphone_07_19-2-29-2 | 0.9259 | 0.9259 | 1.0000 | 0.9615 |
| iphone_07_19-2-31-2 | 0.8140 | 0.8140 | 1.0000 | 0.8974 |
| iphone_07_19-3-17-3 | 0.9578 | 0.9592 | 0.9985 | 0.9784 |
| iphone_07_19-3-18-3 | 0.8114 | 0.8147 | 0.9904 | 0.8940 |
| iphone_07_19-3-21-3 | 0.8439 | 0.8549 | 0.9828 | 0.9144 |
| iphone_07_19-3-22-3 | 0.7697 | 0.7741 | 0.9853 | 0.8670 |
| iphone_07_19-3-23-3 | 0.7126 | 0.7139 | 0.9930 | 0.8306 |
| iphone_07_19-3-24-3 | 0.7494 | 0.7547 | 0.9823 | 0.8536 |
| iphone_07_19-3-28-3 | 0.9628 | 0.9662 | 0.9963 | 0.9810 |
| iphone_07_19-3-29-3 | 0.8769 | 0.8814 | 0.9924 | 0.9336 |
| iphone_07_19-3-31-3 | 0.8023 | 0.8007 | 1.0000 | 0.8893 |
| iphone_07_21-1-17-1 | 0.9767 | 0.9853 | 0.9911 | 0.9882 |
| iphone_07_21-1-18-1 | 0.8796 | 0.9076 | 0.9629 | 0.9345 |
| iphone_07_21-1-19-1 | 0.8804 | 0.9160 | 0.9567 | 0.9359 |
| iphone_07_21-1-22-1 | 0.7956 | 0.8202 | 0.9559 | 0.8828 |
| iphone_07_21-1-23-1 | 0.7757 | 0.7803 | 0.9909 | 0.8731 |
| Continued... |  |  |  |  |


| File | Accuracy | Precision | Recall | score |
| :---: | :---: | :---: | :---: | :---: |
| iphone_07_21-1-24-1 | 0.7264 | 0.7362 | 0.9706 | 0.8373 |
| iphone_07_21-1-28-1 | 0.9521 | 0.9602 | 0.9910 | 0.9754 |
| iphone_07_21-1-29-1 | 0.9157 | 0.9455 | 0.9656 | 0.9555 |
| iphone_07_21-1-31-1 | 0.7857 | 0.8017 | 0.9753 | 0.8800 |
| iphone_07_21-2-17-2 | 0.9534 | 0.9548 | 0.9985 | 0.9762 |
| iphone_07_21-2-18-2 | 0.9444 | 0.9519 | 0.9916 | 0.9713 |
| iphone_07_21-2-19-2 | 0.9621 | 0.9748 | 0.9865 | 0.9806 |
| iphone_07_21-2-22-2 | 0.8408 | 0.8489 | 0.9876 | 0.9130 |
| iphone_07_21-2-23-2 | 0.6913 | 0.6932 | 0.9959 | 0.8175 |
| iphone_07_21-2-24-2 | 0.7230 | 0.7262 | 0.9869 | 0.8367 |
| iphone_07_21-2-28-2 | 0.9406 | 0.9432 | 0.9970 | 0.9693 |
| iphone_07_21-2-29-2 | 0.9264 | 0.9299 | 0.9956 | 0.9616 |
| iphone_07_21-2-31-2 | 0.8289 | 0.8263 | 1.0000 | 0.9049 |
| iphone_07_21-3-17-3 | 0.9549 | 0.9618 | 0.9924 | 0.9768 |
| iphone_07_21-3-18-3 | 0.8081 | 0.8160 | 0.9824 | 0.8915 |
| iphone_07_21-3-19-3 | 0.8359 | 0.8489 | 0.9789 | 0.9093 |
| iphone_07_21-3-22-3 | 0.7649 | 0.7734 | 0.9780 | 0.8637 |
| iphone_07_21-3-23-3 | 0.7069 | 0.7101 | 0.9920 | 0.8277 |
| iphone_07_21-3-24-3 | 0.7459 | 0.7531 | 0.9793 | 0.8515 |
| iphone_07_21-3-28-3 | 0.9578 | 0.9646 | 0.9926 | 0.9784 |
| iphone_07_21-3-29-3 | 0.8728 | 0.8833 | 0.9842 | 0.9310 |
| iphone_07_21-3-31-3 | 0.8023 | 0.8027 | 0.9958 | 0.8889 |
| iphone_07_22-1-17-1 | 0.9854 | 0.9854 | 1.0000 | 0.9927 |
| iphone_07_22-1-18-1 | 0.8913 | 0.8965 | 0.9926 | 0.9421 |
| iphone_07_22-1-19-1 | 0.9038 | 0.9166 | 0.9841 | 0.9492 |
| iphone_07_22-1-21-1 | 0.8330 | 0.8364 | 0.9930 | 0.9080 |
| iphone_07_22-1-23-1 | 0.7729 | 0.7817 | 0.9827 | 0.8708 |
| iphone_07_22-1-24-1 | 0.7304 | 0.7356 | 0.9810 | 0.8408 |
| iphone_07_22-1-28-1 | 0.9535 | 0.9596 | 0.9933 | 0.9761 |
| iphone_07_22-1-29-1 | 0.9356 | 0.9434 | 0.9907 | 0.9665 |
| iphone_07_22-1-31-1 | 0.8056 | 0.8056 | 1.0000 | 0.8924 |
| iphone_07_22-2-17-2 | 0.9549 | 0.9549 | 1.0000 | 0.9769 |
| Continued... |  |  |  |  |


| File | Accuracy | Precision | Recall | score |
| :---: | :---: | :---: | :---: | :---: |
| iphone_07_22-2-18-2 | 0.9426 | 0.9530 | 0.9884 | 0.9703 |
| iphone_07_22-2-19-2 | 0.9560 | 0.9721 | 0.9829 | 0.9775 |
| iphone_07_22-2-21-2 | 0.9067 | 0.9121 | 0.9930 | 0.9508 |
| iphone_07_22-2-23-2 | 0.6962 | 0.6956 | 1.0000 | 0.8205 |
| iphone_07_22-2-24-2 | 0.7218 | 0.7245 | 0.9895 | 0.8365 |
| iphone_07_22-2-28-2 | 0.9421 | 0.9420 | 1.0000 | 0.9701 |
| iphone_07_22-2-29-2 | 0.9239 | 0.9306 | 0.9917 | 0.9602 |
| iphone_07_22-2-31-2 | 0.8140 | 0.8150 | 0.9980 | 0.8972 |
| iphone_07_22-3-17-3 | 0.9563 | 0.9591 | 0.9970 | 0.9777 |
| iphone_07_22-3-18-3 | 0.8065 | 0.8215 | 0.9696 | 0.8894 |
| iphone_07_22-3-19-3 | 0.8293 | 0.8602 | 0.9515 | 0.9035 |
| iphone_07_22-3-21-3 | 0.8381 | 0.8632 | 0.9615 | 0.9097 |
| iphone_07_22-3-23-3 | 0.7140 | 0.7229 | 0.9680 | 0.8277 |
| iphone_07_22-3-24-3 | 0.7522 | 0.7692 | 0.9526 | 0.8512 |
| iphone_07_22-3-28-3 | 0.9506 | 0.9664 | 0.9829 | 0.9746 |
| iphone_07_22-3-29-3 | 0.8656 | 0.8916 | 0.9631 | 0.9260 |
| iphone_07_22-3-31-3 | 0.8023 | 0.8037 | 0.9937 | 0.8887 |
| iphone_07_23-1-17-1 | 0.9723 | 0.9853 | 0.9867 | 0.9860 |
| iphone_07_23-1-18-1 | 0.8615 | 0.9172 | 0.9284 | 0.9228 |
| iphone_07_23-1-19-1 | 0.8287 | 0.9217 | 0.8877 | 0.9044 |
| iphone_07_23-1-21-1 | 0.8069 | 0.8549 | 0.9243 | 0.8882 |
| iphone_07_23-1-22-1 | 0.7712 | 0.8276 | 0.9043 | 0.8643 |
| iphone_07_23-1-24-1 | 0.7363 | 0.7574 | 0.9367 | 0.8375 |
| iphone_07_23-1-28-1 | 0.9342 | 0.9615 | 0.9701 | 0.9658 |
| iphone_07_23-1-29-1 | 0.8682 | 0.9518 | 0.9051 | 0.9279 |
| iphone_07_23-1-31-1 | 0.8040 | 0.8115 | 0.9856 | 0.8901 |
| iphone_07_23-2-17-2 | 0.8617 | 0.9576 | 0.8948 | 0.9251 |
| iphone_07_23-2-18-2 | 0.7566 | 0.9582 | 0.7778 | 0.8586 |
| iphone_07_23-2-19-2 | 0.7473 | 0.9732 | 0.7608 | 0.8540 |
| iphone_07_23-2-21-2 | 0.7869 | 0.9356 | 0.8220 | 0.8751 |
| iphone_07_23-2-22-2 | 0.7568 | 0.8862 | 0.8176 | 0.8505 |
| iphone_07_23-2-24-2 | 0.6949 | 0.7684 | 0.8242 | 0.7953 |
| Continued... |  |  |  |  |


| File | Accuracy | Precision | Recall | score |
| :---: | :---: | :---: | :---: | :---: |
| iphone_07_23-2-28-2 | 0.8119 | 0.9413 | 0.8532 | 0.8951 |
| iphone_07_23-2-29-2 | 0.7859 | 0.9462 | 0.8151 | 0.8758 |
| iphone_07_23-2-31-2 | 0.8189 | 0.8457 | 0.9510 | 0.8953 |
| iphone_07_23-3-17-3 | 0.8879 | 0.9575 | 0.9241 | 0.9405 |
| iphone_07_23-3-18-3 | 0.7550 | 0.8613 | 0.8282 | 0.8444 |
| iphone_07_23-3-19-3 | 0.7256 | 0.8848 | 0.7741 | 0.8258 |
| iphone_07_23-3-21-3 | 0.7400 | 0.8852 | 0.7968 | 0.8387 |
| iphone_07_23-3-22-3 | 0.7040 | 0.8190 | 0.7849 | 0.8016 |
| iphone_07_23-3-24-3 | 0.6985 | 0.7929 | 0.8048 | 0.7988 |
| iphone_07_23-3-28-3 | 0.8755 | 0.9703 | 0.8983 | 0.9329 |
| iphone_07_23-3-29-3 | 0.7767 | 0.9129 | 0.8226 | 0.8654 |
| iphone_07_23-3-31-3 | 0.8173 | 0.8370 | 0.9561 | 0.8926 |
| iphone_07_24-1-17-1 | 0.9709 | 0.9852 | 0.9852 | 0.9852 |
| iphone_07_24-1-18-1 | 0.8737 | 0.9127 | 0.9491 | 0.9305 |
| iphone_07_24-1-19-1 | 0.8530 | 0.9220 | 0.9165 | 0.9192 |
| iphone_07_24-1-21-1 | 0.8198 | 0.8556 | 0.9419 | 0.8967 |
| iphone_07_24-1-22-1 | 0.7858 | 0.8323 | 0.9193 | 0.8736 |
| iphone_07_24-1-23-1 | 0.7928 | 0.7940 | 0.9909 | 0.8816 |
| iphone_07_24-1-28-1 | 0.9499 | 0.9642 | 0.9843 | 0.9741 |
| iphone_07_24-1-29-1 | 0.9121 | 0.9556 | 0.9504 | 0.9530 |
| iphone_07_24-1-31-1 | 0.7940 | 0.8096 | 0.9732 | 0.8839 |
| iphone_07_24-2-17-2 | 0.9491 | 0.9559 | 0.9924 | 0.9738 |
| iphone_07_24-2-18-2 | 0.9019 | 0.9537 | 0.9425 | 0.9481 |
| iphone_07_24-2-19-2 | 0.8898 | 0.9742 | 0.9106 | 0.9414 |
| iphone_07_24-2-21-2 | 0.8807 | 0.9272 | 0.9426 | 0.9349 |
| iphone_07_24-2-22-2 | 0.8193 | 0.8693 | 0.9255 | 0.8965 |
| iphone_07_24-2-23-2 | 0.6934 | 0.7090 | 0.9468 | 0.8109 |
| iphone_07_24-2-28-2 | 0.9299 | 0.9478 | 0.9795 | 0.9634 |
| iphone_07_24-2-29-2 | 0.9070 | 0.9425 | 0.9581 | 0.9502 |
| iphone_07_24-2-31-2 | 0.8040 | 0.8207 | 0.9714 | 0.8897 |
| iphone_07_24-3-17-3 | 0.9418 | 0.9585 | 0.9818 | 0.9700 |
| iphone_07_24-3-18-3 | 0.8143 | 0.8246 | 0.9764 | 0.8941 |
| Continued... |  |  |  |  |


| File | Accuracy | Precision | Recall | score |
| :---: | :---: | :---: | :---: | :---: |
| iphone_07_24-3-19-3 | 0.8296 | 0.8566 | 0.9575 | 0.9042 |
| iphone_07_24-3-21-3 | 0.8393 | 0.8650 | 0.9604 | 0.9102 |
| iphone_07_24-3-22-3 | 0.7713 | 0.7850 | 0.9639 | 0.8653 |
| iphone_07_24-3-23-3 | 0.7225 | 0.7221 | 0.9900 | 0.8351 |
| iphone_07_24-3-28-3 | 0.9542 | 0.9665 | 0.9866 | 0.9765 |
| iphone_07_24-3-29-3 | 0.8687 | 0.8849 | 0.9766 | 0.9285 |
| iphone_07_24-3-31-3 | 0.8056 | 0.8044 | 0.9979 | 0.8908 |
| iphone_07_28-1-17-1 | 0.9854 | 0.9854 | 1.0000 | 0.9927 |
| iphone_07_28-1-18-1 | 0.8908 | 0.8930 | 0.9969 | 0.9421 |
| iphone_07_28-1-19-1 | 0.9110 | 0.9136 | 0.9968 | 0.9534 |
| iphone_07_28-1-21-1 | 0.8318 | 0.8324 | 0.9982 | 0.9078 |
| iphone_07_28-1-22-1 | 0.8061 | 0.8078 | 0.9963 | 0.8922 |
| iphone_07_28-1-23-1 | 0.7793 | 0.7795 | 0.9991 | 0.8757 |
| iphone_07_28-1-24-1 | 0.7289 | 0.7285 | 0.9983 | 0.8423 |
| iphone_07_28-1-29-1 | 0.9356 | 0.9379 | 0.9973 | 0.9667 |
| iphone_07_28-1-31-1 | 0.8073 | 0.8070 | 1.0000 | 0.8932 |
| iphone_07_28-2-17-2 | 0.9491 | 0.9559 | 0.9924 | 0.9738 |
| iphone_07_28-2-18-2 | 0.9420 | 0.9510 | 0.9899 | 0.9701 |
| iphone_07_28-2-19-2 | 0.9632 | 0.9750 | 0.9875 | 0.9812 |
| iphone_07_28-2-21-2 | 0.9070 | 0.9131 | 0.9920 | 0.9509 |
| iphone_07_28-2-22-2 | 0.8441 | 0.8504 | 0.9899 | 0.9149 |
| iphone_07_28-2-23-2 | 0.6969 | 0.6966 | 0.9980 | 0.8205 |
| iphone_07_28-2-24-2 | 0.7172 | 0.7218 | 0.9874 | 0.8339 |
| iphone_07_28-2-29-2 | 0.9249 | 0.9285 | 0.9956 | 0.9609 |
| iphone_07_28-2-31-2 | 0.8156 | 0.8174 | 0.9959 | 0.8979 |
| iphone_07_28-3-17-3 | 0.9563 | 0.9591 | 0.9970 | 0.9777 |
| iphone_07_28-3-18-3 | 0.8070 | 0.8068 | 0.9986 | 0.8925 |
| iphone_07_28-3-19-3 | 0.8408 | 0.8425 | 0.9969 | 0.9132 |
| iphone_07_28-3-21-3 | 0.8449 | 0.8490 | 0.9940 | 0.9158 |
| iphone_07_28-3-22-3 | 0.7622 | 0.7643 | 0.9947 | 0.8644 |
| iphone_07_28-3-23-3 | 0.7126 | 0.7117 | 1.0000 | 0.8316 |
| iphone_07_28-3-24-3 | 0.7458 | 0.7465 | 0.9965 | 0.8536 |

Continued...

| File | Accuracy | Precision | Recall | score |
| :---: | :---: | :---: | :---: | :---: |
| iphone_07_28-3-29-3 | 0.8743 | 0.8760 | 0.9971 | 0.9326 |
| iphone_07_28-3-31-3 | 0.7990 | 0.7980 | 1.0000 | 0.8877 |
| iphone_07_29-1-17-1 | 0.9854 | 0.9854 | 1.0000 | 0.9927 |
| iphone_07_29-1-18-1 | 0.8907 | 0.8917 | 0.9986 | 0.9421 |
| iphone_07_29-1-19-1 | 0.9101 | 0.9130 | 0.9965 | 0.9529 |
| iphone_07_29-1-21-1 | 0.8291 | 0.8302 | 0.9982 | 0.9065 |
| iphone_07_29-1-22-1 | 0.8069 | 0.8073 | 0.9986 | 0.8928 |
| iphone_07_29-1-23-1 | 0.7800 | 0.7797 | 1.0000 | 0.8762 |
| iphone_07_29-1-24-1 | 0.7272 | 0.7271 | 0.9989 | 0.8416 |
| iphone_07_29-1-28-1 | 0.9585 | 0.9585 | 1.0000 | 0.9788 |
| iphone_07_29-1-31-1 | 0.8056 | 0.8056 | 1.0000 | 0.8924 |
| iphone_07_29-2-17-2 | 0.9549 | 0.9549 | 1.0000 | 0.9769 |
| iphone_07_29-2-18-2 | 0.9485 | 0.9501 | 0.9983 | 0.9736 |
| iphone_07_29-2-19-2 | 0.9706 | 0.9738 | 0.9965 | 0.9850 |
| iphone_07_29-2-21-2 | 0.9070 | 0.9099 | 0.9962 | 0.9511 |
| iphone_07_29-2-22-2 | 0.8437 | 0.8473 | 0.9945 | 0.9150 |
| iphone_07_29-2-23-2 | 0.6934 | 0.6944 | 0.9969 | 0.8186 |
| iphone_07_29-2-24-2 | 0.7190 | 0.7208 | 0.9944 | 0.8358 |
| iphone_07_29-2-28-2 | 0.9413 | 0.9419 | 0.9992 | 0.9697 |
| iphone_07_29-2-31-2 | 0.8206 | 0.8194 | 1.0000 | 0.9007 |
| iphone_07_29-3-17-3 | 0.9054 | 0.9569 | 0.9439 | 0.9503 |
| iphone_07_29-3-18-3 | 0.7991 | 0.8165 | 0.9670 | 0.8854 |
| iphone_07_29-3-19-3 | 0.8205 | 0.8575 | 0.9432 | 0.8983 |
| iphone_07_29-3-21-3 | 0.8332 | 0.8676 | 0.9480 | 0.9060 |
| iphone_07_29-3-22-3 | 0.7476 | 0.7761 | 0.9400 | 0.8502 |
| iphone_07_29-3-23-3 | 0.6991 | 0.7121 | 0.9670 | 0.8202 |
| iphone_07_29-3-24-3 | 0.7291 | 0.7594 | 0.9304 | 0.8363 |
| iphone_07_29-3-28-3 | 0.9349 | 0.9666 | 0.9659 | 0.9662 |
| iphone_07_29-3-31-3 | 0.8173 | 0.8251 | 0.9770 | 0.8946 |
| iphone_07_31-1-17-1 | 0.7802 | 0.9981 | 0.7784 | 0.8747 |
| iphone_07_31-1-18-1 | 0.7734 | 0.9025 | 0.8362 | 0.8681 |
| iphone_07_31-1-19-1 | 0.8064 | 0.9118 | 0.8722 | 0.8916 |
| Continued... |  |  |  |  |


| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| iphone_07_31-1-21-1 | 0.7904 | 0.8527 | 0.9035 | 0.8774 |
| iphone_07_31-1-22-1 | 0.7283 | 0.8140 | 0.8589 | 0.8359 |
| iphone_07_31-1-23-1 | 0.7268 | 0.7760 | 0.9125 | 0.8387 |
| iphone_07_31-1-24-1 | 0.6675 | 0.7248 | 0.8733 | 0.7921 |
| iphone_07_31-1-28-1 | 0.8712 | 0.9610 | 0.9022 | 0.9307 |
| iphone_07_31-1-29-1 | 0.8370 | 0.9401 | 0.8822 | 0.9102 |
| iphone_07_31-2-17-2 | 0.8239 | 0.9542 | 0.8567 | 0.9028 |
| iphone_07_31-2-18-2 | 0.8129 | 0.9544 | 0.8434 | 0.8955 |
| iphone_07_31-2-19-2 | 0.8452 | 0.9746 | 0.8631 | 0.9155 |
| iphone_07_31-2-21-2 | 0.8147 | 0.9231 | 0.8684 | 0.8949 |
| iphone_07_31-2-22-2 | 0.7484 | 0.8592 | 0.8404 | 0.8497 |
| iphone_07_31-2-23-2 | 0.6899 | 0.7008 | 0.9652 | 0.8120 |
| iphone_07_31-2-24-2 | 0.6717 | 0.7216 | 0.8850 | 0.7950 |
| iphone_07_31-2-28-2 | 0.8827 | 0.9458 | 0.9285 | 0.9371 |
| iphone_07_31-2-29-2 | 0.8176 | 0.9307 | 0.8675 | 0.8980 |
| iphone_07_31-3-17-3 | 0.8210 | 0.9685 | 0.8407 | 0.9001 |
| iphone_07_31-3-18-3 | 0.7266 | 0.8284 | 0.8318 | 0.8301 |
| iphone_07_31-3-19-3 | 0.7511 | 0.8563 | 0.8458 | 0.8510 |
| iphone_07_31-3-21-3 | 0.7792 | 0.8791 | 0.8576 | 0.8682 |
| iphone_07_31-3-22-3 | 0.6746 | 0.7797 | 0.7986 | 0.7890 |
| iphone_07_31-3-23-3 | 0.7048 | 0.7226 | 0.9480 | 0.8201 |
| iphone_07_31-3-24-3 | 0.6893 | 0.7573 | 0.8568 | 0.8040 |
| iphone_07_31-3-28-3 | 0.8791 | 0.9682 | 0.9042 | 0.9351 |
| iphone_07_31-3-29-3 | 0.7971 | 0.8995 | 0.8642 | 0.8815 |
| Min |  |  |  |  |
| Max | 0.6675 | 0.6932 | 0.7608 | 0.7890 |
| Avg | 0.8370 | 0.8625 | 0.9638 | 0.9069 |
| Std Dev | 0.0860 | 0.0863 | 0.0556 | 0.0532 |
|  |  |  |  |  |

## G. 2 \#\#iphone, SAME SESSION, DIFFERENT ANNOTATOR

| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| iphone_07_17-1-2 | 0.9549 | 0.9549 | 1.0000 | 0.9769 |
| iphone_07_17-1-3 | 0.9592 | 0.9592 | 1.0000 | 0.9792 |
| iphone_07_17-2-1 | 0.9854 | 0.9854 | 1.0000 | 0.9927 |
| iphone_07_17-2-3 | 0.9592 | 0.9592 | 1.0000 | 0.9792 |
| iphone_07_17-3-1 | 0.9854 | 0.9854 | 1.0000 | 0.9927 |
| iphone_07_17-3-2 | 0.9549 | 0.9549 | 1.0000 | 0.9769 |
| iphone_07_18-1-2 | 0.9413 | 0.9548 | 0.9848 | 0.9696 |
| iphone_07_18-1-3 | 0.8116 | 0.8135 | 0.9930 | 0.8943 |
| iphone_07_18-2-1 | 0.8915 | 0.8915 | 1.0000 | 0.9426 |
| iphone_07_18-2-3 | 0.8028 | 0.8028 | 1.0000 | 0.8906 |
| iphone_07_18-3-1 | 0.8884 | 0.9147 | 0.9647 | 0.9391 |
| iphone_07_18-3-2 | 0.9134 | 0.9592 | 0.9492 | 0.9542 |
| iphone_07_19-1-2 | 0.9717 | 0.9728 | 0.9987 | 0.9856 |
| iphone_07_19-1-3 | 0.8413 | 0.8417 | 0.9991 | 0.9136 |
| iphone_07_19-2-1 | 0.9140 | 0.9141 | 0.9997 | 0.9550 |
| iphone_07_19-2-3 | 0.8419 | 0.8418 | 0.9998 | 0.9140 |
| iphone_07_19-3-1 | 0.8947 | 0.9159 | 0.9740 | 0.9441 |
| iphone_07_19-3-2 | 0.9487 | 0.9741 | 0.9731 | 0.9736 |
| iphone_07_21-1-2 | 0.8941 | 0.9215 | 0.9657 | 0.9431 |
| iphone_07_21-1-3 | 0.8507 | 0.8672 | 0.9730 | 0.9171 |
| iphone_07_21-2-1 | 0.8369 | 0.8387 | 0.9947 | 0.9101 |
| iphone_07_21-2-3 | 0.8532 | 0.8563 | 0.9937 | 0.9199 |
| iphone_07_21-3-1 | 0.8427 | 0.8477 | 0.9880 | 0.9125 |
| iphone_07_21-3-2 | 0.9053 | 0.9205 | 0.9804 | 0.9495 |
| iphone_07_22-1-2 | 0.8379 | 0.8511 | 0.9798 | 0.9109 |
| iphone_07_22-1-3 | 0.7708 | 0.7734 | 0.9888 | 0.8679 |
| iphone_07_22-2-1 | 0.8018 | 0.8099 | 0.9852 | 0.8890 |
| iphone_07_22-2-3 | 0.7635 | 0.7681 | 0.9878 | 0.8642 |
| iphone_07_22-3-1 | 0.8022 | 0.8302 | 0.9484 | 0.8854 |
| iphone_07_22-3-2 | 0.8255 | 0.8649 | 0.9406 | 0.9012 |
| iphone_07_23-1-2 | 0.6991 | 0.7080 | 0.9642 | 0.8165 |
| iphone_07_23-1-3 | 0.7388 | 0.7372 | 0.9820 | 0.8422 |
|  |  |  | Continued.. |  |


| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| iphone_07_23-2-1 | 0.7324 | 0.8093 | 0.8587 | 0.8333 |
| iphone_07_23-2-3 | 0.7161 | 0.7577 | 0.8820 | 0.8152 |
| iphone_07_23-3-1 | 0.7814 | 0.8164 | 0.9280 | 0.8686 |
| iphone_07_23-3-2 | 0.7140 | 0.7306 | 0.9315 | 0.8189 |
| iphone_07_24-1-2 | 0.7273 | 0.7473 | 0.9380 | 0.8318 |
| iphone_07_24-1-3 | 0.7479 | 0.7722 | 0.9374 | 0.8468 |
| iphone_07_24-2-1 | 0.7311 | 0.7588 | 0.9227 | 0.8328 |
| iphone_07_24-2-3 | 0.7453 | 0.7771 | 0.9219 | 0.8433 |
| iphone_07_24-3-1 | 0.7359 | 0.7474 | 0.9606 | 0.8407 |
| iphone_07_24-3-2 | 0.7349 | 0.7434 | 0.9640 | 0.8395 |
| iphone_07_28-1-2 | 0.9421 | 0.9420 | 1.0000 | 0.9701 |
| iphone_07_28-1-3 | 0.9649 | 0.9649 | 1.0000 | 0.9821 |
| iphone_07_28-2-1 | 0.9592 | 0.9598 | 0.9993 | 0.9791 |
| iphone_07_28-2-3 | 0.9649 | 0.9656 | 0.9993 | 0.9821 |
| iphone_07_28-3-1 | 0.9599 | 0.9599 | 1.0000 | 0.9795 |
| iphone_07_28-3-2 | 0.9428 | 0.9427 | 1.0000 | 0.9705 |
| iphone_07_29-1-2 | 0.9254 | 0.9272 | 0.9978 | 0.9612 |
| iphone_07_29-1-3 | 0.8753 | 0.8754 | 0.9994 | 0.9333 |
| iphone_07_29-2-1 | 0.9377 | 0.9394 | 0.9978 | 0.9677 |
| iphone_07_29-2-3 | 0.8758 | 0.8762 | 0.9988 | 0.9335 |
| iphone_07_29-3-1 | 0.9234 | 0.9469 | 0.9727 | 0.9596 |
| iphone_07_29-3-2 | 0.9136 | 0.9363 | 0.9730 | 0.9543 |
| iphone_07_31-1-2 | 0.8206 | 0.8550 | 0.9388 | 0.8949 |
| iphone_07_31-1-3 | 0.8239 | 0.8457 | 0.9519 | 0.8957 |
| iphone_07_31-2-1 | 0.8140 | 0.8422 | 0.9464 | 0.8913 |
| iphone_07_31-2-3 | 0.8455 | 0.8532 | 0.9728 | 0.9091 |
| iphone_07_31-3-1 | 0.8306 | 0.8634 | 0.9381 | 0.8992 |
| iphone_07_31-3-2 | 0.8654 | 0.8880 | 0.9551 | 0.9204 |
| Min |  |  |  |  |
| Max | 0.6991 | 0.7080 | 0.8587 | 0.8152 |
| Avg | 0.9854 | 0.9854 | 1.0000 | 0.9927 |
|  | 0.8572 | 0.8706 | 0.9732 | 0.9176 |
| iph |  |  |  | $C 0 n$ |

Continued...

| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| Std Dev | 0.0840 | 0.0788 | 0.0311 | 0.0530 |

## G. 3 \#\#physics, SAME ANNOTATOR, DIFFERENT SESSION

File

```
physics_07_17-1-18-1
physics_07_17-1-19-1
physics_07_17-1-19-1 0.9228
```

physics_07_17-1-21-1
physics_07_17-1-22-1
physics_07_17-1-23-1
physics_07_17-1-24-1
physics_07_17-1-28-1
physics_07_17-1-29-1
physics_07_17-1-31-1
physics_07_17-2-18-2
physics_07_17-2-19-2
physics_07_17-2-21-2
physics_07_17-2-22-2
physics_07_17-2-23-2
physics_07_17-2-24-2
physics_07_17-2-28-2
physics_07_17-2-29-2
physics_07_17-2-31-2
physics_07_17-3-18-3
physics_07_17-3-19-3
physics_07_17-3-21-3
physics_07_17-3-22-3
physics_07_17-3-23-3
physics_07_17-3-24-3
physics_07_17-3-28-3

Accuracy
Precision
Recall
F-score
0.9951
$0.9951 \quad 1.0000$
0.9975
physics_07_17-1-21-1 0.9518
physics_07_17-1-22-1
physics_07_17-1-23-1
physics 07-17-1-24-1
physics_07_17-1-28-1
physics_07_17-1-29-1
physics_07_17-1-31-1
physics_07_17-2-18-2
physics_07_17-2-19-2
physics_07_17-2-21-2
physics_07_17-2-22-2
physics_07_17-2-23-2
physics_07_17-2-24-2
physics_07_17-2-28-2
physics_07_17-2-29-2
physics_07_17-2-31-2
physics_07_17-3-18-3
physics_07_17-3-19-3
physics_07_17-3-21-3
physics_07_17-3-22-3
physics_07_17-3-23-3
0.9779

0
0.6845
0.9228
1.0000
0.9598
0.9518
$1.0000 \quad 0.9753$
1.0000
1.0000
$1.0000 \quad 1.0000$
1.0000
1.0000
1.00001 .0000
$0.8936 \quad 1.0000 \quad 0.9438$
0.9083
$1.0000 \quad 0.9519$
$0.9872 \quad 1.0000 \quad 0.9936$
$0.9724 \quad 1.0000 \quad 0.9860$
0.9948
$0.9522 \quad 0.9731$
0.9091
$0.9840 \quad 0.9451$
0.9691
$0.9565 \quad 0.9628$
0.9817
0.98430 .9830
$0.9755 \quad 0.97550 .9755$
$0.8242 \quad 0.89260 .8570$

| 0.6538 | 0.9318 | 0.7684 |
| :--- | :--- | :--- |

0.9204
0.91740 .9189
$0.9641 \quad 0.9918 \quad 0.9778$
$1.0000 \quad 1.0000 \quad 1.0000$
$0.9393 \quad 1.0000 \quad 0.9687$

| 0.9409 | 1.0000 | 0.9696 |
| :--- | :--- | :--- |
| 1.0000 | 1.0000 | 1.0000 |

$\begin{array}{lll}0.9779 & 1.0000 & 0.9888\end{array}$
$0.8645 \quad 1.0000 \quad 0.9273$
$0.6845 \quad 1.0000 \quad 0.8127$

Continued...

| File | Accuracy | Precision | Recall | cor |
| :---: | :---: | :---: | :---: | :---: |
| physics_07_17-3-29-3 | 0.8387 | 0.8387 | 1.0000 | 0.9 |
| physics_07_17-3-31-3 | 0.9270 | 0.9270 | 1.0000 | 0.96 |
| physics_07_18-1-17-1 | 0.9875 | 0.9875 | 1.0000 | 0.9937 |
| physics_07_18-1-19-1 | 0.9228 | 0.9228 | 1.0000 | 0.9598 |
| physics_07_18-1-21-1 | 0.9518 | 0.9518 | 1.0000 | 0.9753 |
| physics_07_18-1-22-1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_18-1-23-1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_18-1-24-1 | 0.8936 | 0.8936 | 1.0000 | 0.9438 |
| physics_07_18-1-28-1 | 0.9083 | 0.9083 | 1.0000 | 0.95 |
| physics_07_18-1-29-1 | 0.9872 | 0.9872 | 1.0000 | 0.9936 |
| physics_07_18-1-31-1 | 0.9724 | 0.9724 | 1.0000 | 0.9860 |
| physics_07_18-2-17-2 | 0.9438 | 0.9438 | 1.0000 | 0.9711 |
| physics_07_18-2-19-2 | 0.9031 | 0.9031 | 1.0000 | 0.9491 |
| physics_07_18-2-21-2 | 0.96 | 0.96 | 1.0000 | 0.9 |
| physics_07_18-2-22-2 | 0.9820 | 0.9820 | 1.0000 | 0.99 |
| physics_07_18-2-23-2 | 0.9761 | 0.9761 | 1.0000 | 0.9879 |
| physics_07_18-2-24-2 | 0.8188 | 0.8188 | 1.0000 | 0.900 |
| physics_07_18-2-28-2 | 0.6528 | 0.6528 | 1.0000 | 0.7899 |
| physics_07_18-2-29-2 | 0.9093 | 0.9093 | 1.0000 | 0.9525 |
| physics_07_18-2-31-2 | 0.9625 | 0.9625 | 1.0000 | 0.980 |
| physics_07_18-3-17-3 | 1.0000 | 1.0000 | 1.0000 | 1.000 |
| physics_07_18-3-19-3 | 0.9393 | 0.9393 | 1.0000 | 0.968 |
| physics_07_18-3-21-3 | 0.9409 | 0.9409 | 1.0000 | 0.969 |
| physics_07_18-3-22-3 | 1.0000 | 1.0000 | 1.0000 | 1.000 |
| physics_07_18-3-23-3 | 0.9779 | 0.9779 | 1.0000 | 0.9888 |
| physics_07_18-3-24-3 | 0.8645 | 0.8645 | 1.0000 | 0.9273 |
| physics_07_18-3-28-3 | 0.6845 | 0.6845 | 1.0000 | 0.8127 |
| physics_07_18-3-29-3 | 0.8387 | 0.8387 | 1.0000 | 0.9123 |
| physics_07_18-3-31-3 | 0.9270 | 0.9270 | 1.0000 | 0.9621 |
| physics_07_19-1-17-1 | 0.9688 | 0.9873 | 0.9810 | 0.9841 |
| physics_07_19-1-18-1 | 0.9656 | 0.9949 | 0.9703 | 0.9825 |
| physics_07_19-1-21-1 | 0.9415 | 0.9520 | 0.9883 | 0.9699 |

Continued...

| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| physics_07_19-1-22-1 | 0.9961 | 1.0000 | 0.9961 | 0.9981 |
| physics_07_19-1-23-1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_19-1-24-1 | 0.8829 | 0.8937 | 0.9863 | 0.9377 |
| physics_07_19-1-28-1 | 0.8942 | 0.9130 | 0.9766 | 0.9437 |
| physics_07_19-1-29-1 | 0.9762 | 0.9871 | 0.9888 | 0.9880 |
| physics_07_19-1-31-1 | 0.9744 | 0.9743 | 1.0000 | 0.9870 |
| physics_07_19-2-17-2 | 0.9625 | 0.9618 | 1.0000 | 0.9805 |
| physics_07_19-2-18-2 | 0.9525 | 0.9949 | 0.9572 | 0.9757 |
| physics_07_19-2-21-2 | 0.9417 | 0.9691 | 0.9705 | 0.9698 |
| physics_07_19-2-22-2 | 0.9756 | 0.9819 | 0.9935 | 0.9877 |
| physics_07_19-2-23-2 | 0.9669 | 0.9759 | 0.9906 | 0.9832 |
| physics_07_19-2-24-2 | 0.7868 | 0.8346 | 0.9225 | 0.8763 |
| physics_07_19-2-28-2 | 0.6460 | 0.6646 | 0.9240 | 0.7731 |
| physics_07_19-2-29-2 | 0.8838 | 0.9204 | 0.9548 | 0.9373 |
| physics_07_19-2-31-2 | 0.9684 | 0.9683 | 1.0000 | 0.9839 |
| physics_07_19-3-17-3 | 0.9813 | 1.0000 | 0.9813 | 0.9905 |
| physics_07_19-3-18-3 | 0.9869 | 1.0000 | 0.9869 | 0.9934 |
| physics_07_19-3-21-3 | 0.9322 | 0.9408 | 0.9904 | 0.9649 |
| physics_07_19-3-22-3 | 0.9974 | 1.0000 | 0.9974 | 0.9987 |
| physics_07_19-3-23-3 | 0.9779 | 0.9779 | 1.0000 | 0.9888 |
| physics_07_19-3-24-3 | 0.8578 | 0.8648 | 0.9904 | 0.9233 |
| physics_07_19-3-28-3 | 0.6839 | 0.6880 | 0.9847 | 0.8101 |
| physics_07_19-3-29-3 | 0.8370 | 0.8412 | 0.9931 | 0.9109 |
| physics_07_19-3-31-3 | 0.9270 | 0.9270 | 1.0000 | 0.9621 |
| physics_07_21-1-17-1 | 0.9875 | 0.9875 | 1.0000 | 0.9937 |
| physics_07_21-1-18-1 | 0.9951 | 0.9951 | 1.0000 | 0.9975 |
| physics_07_21-1-19-1 | 0.9228 | 0.9228 | 1.0000 | 0.9598 |
| physics_07_21-1-22-1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_21-1-23-1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_21-1-24-1 | 0.8936 | 0.8936 | 1.0000 | 0.9438 |
| physics_07_21-1-28-1 | 0.9083 | 0.9083 | 1.0000 | 0.9519 |
| physics_07_21-1-29-1 | 0.9872 | 0.9872 | 1.0000 | 0.9936 |

Continued...

| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| physics_07_21-1-31-1 | 0.9724 | 0.9724 | 1.0000 | 0.9860 |
| physics_07_21-2-17-2 | 0.9438 | 0.9438 | 1.0000 | 0.9711 |
| physics_07_21-2-18-2 | 0.9934 | 0.9951 | 0.9984 | 0.9967 |
| physics_07_21-2-19-2 | 0.9043 | 0.9042 | 1.0000 | 0.9497 |
| physics_07_21-2-22-2 | 0.9820 | 0.9820 | 1.0000 | 0.9909 |
| physics_07_21-2-23-2 | 0.9761 | 0.9761 | 1.0000 | 0.9879 |
| physics_07_21-2-24-2 | 0.8182 | 0.8187 | 0.9993 | 0.9000 |
| physics_07_21-2-28-2 | 0.6534 | 0.6533 | 0.9995 | 0.7902 |
| physics_07_21-2-29-2 | 0.9093 | 0.9095 | 0.9997 | 0.9525 |
| physics_07_21-2-31-2 | 0.9625 | 0.9625 | 1.0000 | 0.9809 |
| physics_07_21-3-17-3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_21-3-18-3 | 0.9902 | 1.0000 | 0.9902 | 0.9951 |
| physics_07_21-3-19-3 | 0.9385 | 0.9392 | 0.9991 | 0.9683 |
| physics_07_21-3-22-3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_21-3-23-3 | 0.9779 | 0.9779 | 1.0000 | 0.9888 |
| physics_07_21-3-24-3 | 0.8634 | 0.8644 | 0.9986 | 0.9267 |
| physics_07_21-3-28-3 | 0.6869 | 0.6861 | 1.0000 | 0.8139 |
| physics_07_21-3-29-3 | 0.8375 | 0.8390 | 0.9976 | 0.9115 |
| physics_07_21-3-31-3 | 0.9270 | 0.9270 | 1.0000 | 0.9621 |
| physics_07_22-1-17-1 | 0.9875 | 0.9875 | 1.0000 | 0.9937 |
| physics_07_22-1-18-1 | 0.9951 | 0.9951 | 1.0000 | 0.9975 |
| physics_07_22-1-19-1 | 0.9228 | 0.9228 | 1.0000 | 0.9598 |
| physics_07_22-1-21-1 | 0.9518 | 0.9518 | 1.0000 | 0.9753 |
| physics_07_22-1-23-1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_22-1-24-1 | 0.8936 | 0.8936 | 1.0000 | 0.9438 |
| physics_07_22-1-28-1 | 0.9083 | 0.9083 | 1.0000 | 0.9519 |
| physics_07_22-1-29-1 | 0.9872 | 0.9872 | 1.0000 | 0.9936 |
| physics_07_22-1-31-1 | 0.9724 | 0.9724 | 1.0000 | 0.9860 |
| physics_07_22-2-17-2 | 0.9438 | 0.9438 | 1.0000 | 0.9711 |
| physics_07_22-2-18-2 | 0.9951 | 0.9951 | 1.0000 | 0.9975 |
| physics_07_22-2-19-2 | 0.9027 | 0.9031 | 0.9996 | 0.9489 |
| physics_07_22-2-21-2 | 0.9635 | 0.9652 | 0.9981 | 0.9814 |

Continued...

| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| physics_07_22-2-23-2 | 0.9761 | 0.9761 | 1.0000 | 0.9879 |
| physics_07_22-2-24-2 | 0.8154 | 0.8194 | 0.9935 | 0.8981 |
| physics_07_22-2-28-2 | 0.6528 | 0.6533 | 0.9977 | 0.7896 |
| physics_07_22-2-29-2 | 0.9056 | 0.9098 | 0.9948 | 0.9504 |
| physics_07_22-2-31-2 | 0.9625 | 0.9625 | 1.0000 | 0.9809 |
| physics_07_22-3-17-3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_22-3-18-3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_22-3-19-3 | 0.9393 | 0.9393 | 1.0000 | 0.9687 |
| physics_07_22-3-21-3 | 0.9409 | 0.9409 | 1.0000 | 0.9696 |
| physics_07_22-3-23-3 | 0.9779 | 0.9779 | 1.0000 | 0.9888 |
| physics_07_22-3-24-3 | 0.8645 | 0.8645 | 1.0000 | 0.9273 |
| physics_07_22-3-28-3 | 0.6845 | 0.6845 | 1.0000 | 0.8127 |
| physics_07_22-3-29-3 | 0.8387 | 0.8387 | 1.0000 | 0.9123 |
| physics_07_22-3-31-3 | 0.9270 | 0.9270 | 1.0000 | 0.9621 |
| physics_07_23-1-17-1 | 0.9875 | 0.9875 | 1.0000 | 0.9937 |
| physics_07_23-1-18-1 | 0.9951 | 0.9951 | 1.0000 | 0.9975 |
| physics_07_23-1-19-1 | 0.9228 | 0.9228 | 1.0000 | 0.9598 |
| physics_07_23-1-21-1 | 0.9518 | 0.9518 | 1.0000 | 0.9753 |
| physics_07_23-1-22-1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_23-1-24-1 | 0.8936 | 0.8936 | 1.0000 | 0.9438 |
| physics_07_23-1-28-1 | 0.9083 | 0.9083 | 1.0000 | 0.9519 |
| physics_07_23-1-29-1 | 0.9872 | 0.9872 | 1.0000 | 0.9936 |
| physics_07_23-1-31-1 | 0.9724 | 0.9724 | 1.0000 | 0.9860 |
| physics_07_23-2-17-2 | 0.9438 | 0.9438 | 1.0000 | 0.9711 |
| physics_07_23-2-18-2 | 0.9967 | 0.9967 | 1.0000 | 0.9984 |
| physics_07_23-2-19-2 | 0.9039 | 0.9038 | 1.0000 | 0.9495 |
| physics_07_23-2-21-2 | 0.9645 | 0.9651 | 0.9994 | 0.9819 |
| physics_07_23-2-22-2 | 0.9820 | 0.9820 | 1.0000 | 0.9909 |
| physics_07_23-2-24-2 | 0.8188 | 0.8188 | 1.0000 | 0.9004 |
| physics_07_23-2-28-2 | 0.6549 | 0.6542 | 1.0000 | 0.7910 |
| physics_07_23-2-29-2 | 0.9078 | 0.9092 | 0.9983 | 0.9517 |
| physics_07_23-2-31-2 | 0.9606 | 0.9625 | 0.9980 | 0.9799 |
|  |  |  | Continued... |  |


| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| physics_07_23-3-17-3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_23-3-18-3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_23-3-19-3 | 0.9405 | 0.9404 | 1.0000 | 0.9693 |
| physics_07_23-3-21-3 | 0.9405 | 0.9409 | 0.9996 | 0.9693 |
| physics_07_23-3-22-3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_23-3-24-3 | 0.8645 | 0.8645 | 1.0000 | 0.9273 |
| physics_07_23-3-28-3 | 0.6869 | 0.6861 | 1.0000 | 0.8139 |
| physics_07_23-3-29-3 | 0.8375 | 0.8385 | 0.9985 | 0.9115 |
| physics_07_23-3-31-3 | 0.9270 | 0.9270 | 1.0000 | 0.9621 |
| physics_07_24-1-17-1 | 0.9875 | 0.9875 | 1.0000 | 0.9937 |
| physics_07_24-1-18-1 | 0.9836 | 0.9967 | 0.9868 | 0.9917 |
| physics_07_24-1-19-1 | 0.9240 | 0.9243 | 0.9996 | 0.9604 |
| physics_07_24-1-21-1 | 0.9502 | 0.9525 | 0.9975 | 0.9744 |
| physics_07_24-1-22-1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_24-1-23-1 | 0.9890 | 1.0000 | 0.9890 | 0.9945 |
| physics_07_24-1-28-1 | 0.9113 | 0.9135 | 0.9967 | 0.9533 |
| physics_07_24-1-29-1 | 0.9825 | 0.9874 | 0.9949 | 0.9912 |
| physics_07_24-1-31-1 | 0.9862 | 0.9899 | 0.9959 | 0.9929 |
| physics_07_24-2-17-2 | 0.9438 | 0.9438 | 1.0000 | 0.9711 |
| physics_07_24-2-18-2 | 0.9361 | 0.9982 | 0.9374 | 0.9669 |
| physics_07_24-2-19-2 | 0.8995 | 0.9094 | 0.9871 | 0.9466 |
| physics_07_24-2-21-2 | 0.9454 | 0.9669 | 0.9768 | 0.9718 |
| physics_07_24-2-22-2 | 0.9782 | 0.9820 | 0.9961 | 0.9890 |
| physics_07_24-2-23-2 | 0.9835 | 0.9869 | 0.9962 | 0.9916 |
| physics_07_24-2-28-2 | 0.6791 | 0.6734 | 0.9872 | 0.8007 |
| physics_07_24-2-29-2 | 0.8828 | 0.9113 | 0.9650 | 0.9374 |
| physics_07_24-2-31-2 | 0.9546 | 0.9774 | 0.9754 | 0.9764 |
| physics_07_24-3-17-3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_24-3-18-3 | 0.9951 | 1.0000 | 0.9951 | 0.9975 |
| physics_07_24-3-19-3 | 0.9393 | 0.9407 | 0.9983 | 0.9686 |
| physics_07_24-3-21-3 | 0.9379 | 0.9413 | 0.9961 | 0.9679 |
| physics_07_24-3-22-3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|  |  |  | Continued... |  |
|  |  |  |  |  |


| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| physics_07_24-3-23-3 | 0.9853 | 0.9870 | 0.9981 | 0.9925 |
| physics_07_24-3-28-3 | 0.6947 | 0.6916 | 0.9996 | 0.8176 |
| physics_07_24-3-29-3 | 0.8342 | 0.8382 | 0.9943 | 0.9096 |
| physics_07_24-3-31-3 | 0.9290 | 0.9340 | 0.9936 | 0.9629 |
| physics_07_28-1-17-1 | 0.9875 | 0.9875 | 1.0000 | 0.9937 |
| physics_07_28-1-18-1 | 0.9967 | 0.9984 | 0.9984 | 0.9984 |
| physics_07_28-1-19-1 | 0.9228 | 0.9245 | 0.9978 | 0.9598 |
| physics_07_28-1-21-1 | 0.9492 | 0.9526 | 0.9962 | 0.9739 |
| physics_07_28-1-22-1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_28-1-23-1 | 0.9871 | 1.0000 | 0.9871 | 0.9935 |
| physics_07_28-1-24-1 | 0.8953 | 0.8952 | 0.9998 | 0.9446 |
| physics_07_28-1-29-1 | 0.9815 | 0.9874 | 0.9939 | 0.9906 |
| physics_07_28-1-31-1 | 0.9665 | 0.9741 | 0.9919 | 0.9829 |
| physics_07_28-2-17-2 | 0.7938 | 0.9683 | 0.8079 | 0.8809 |
| physics_07_28-2-18-2 | 0.7590 | 1.0000 | 0.7578 | 0.8622 |
| physics_07_28-2-19-2 | 0.7945 | 0.9263 | 0.8393 | 0.8806 |
| physics_07_28-2-21-2 | 0.8056 | 0.9809 | 0.8145 | 0.8900 |
| physics_07_28-2-22-2 | 0.8511 | 0.9880 | 0.8588 | 0.9189 |
| physics_07_28-2-23-2 | 0.8676 | 0.9935 | 0.8701 | 0.9277 |
| physics_07_28-2-24-2 | 0.7049 | 0.8772 | 0.7437 | 0.8050 |
| physics_07_28-2-29-2 | 0.7483 | 0.9238 | 0.7882 | 0.8506 |
| physics_07_28-2-31-2 | 0.8876 | 0.9865 | 0.8955 | 0.9388 |
| physics_07_28-3-17-3 | 0.9438 | 1.0000 | 0.9438 | 0.9711 |
| physics_07_28-3-18-3 | 0.8525 | 1.0000 | 0.8525 | 0.9204 |
| physics_07_28-3-19-3 | 0.8979 | 0.9594 | 0.9307 | 0.9448 |
| physics_07_28-3-21-3 | 0.8800 | 0.9498 | 0.9211 | 0.9353 |
| physics_07_28-3-22-3 | 0.9435 | 1.0000 | 0.9435 | 0.9709 |
| physics_07_28-3-23-3 | 0.9577 | 0.9885 | 0.9680 | 0.9782 |
| physics_07_28-3-24-3 | 0.7622 | 0.8852 | 0.8329 | 0.8582 |
| physics_07_28-3-29-3 | 0.8094 | 0.8664 | 0.9137 | 0.8894 |
| physics_07_28-3-31-3 | 0.9231 | 0.9518 | 0.9660 | 0.9588 |
| physics_07_29-1-17-1 | 0.9875 | 0.9875 | 1.0000 | 0.9937 |
|  |  |  | Continued.. |  |


| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| physics_07_29-1-18-1 | 0.9951 | 0.9951 | 1.0000 | 0.9975 |
| physics_07_29-1-19-1 | 0.9228 | 0.9228 | 1.0000 | 0.9598 |
| physics_07_29-1-21-1 | 0.9506 | 0.9517 | 0.9987 | 0.9747 |
| physics_07_29-1-22-1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_29-1-23-1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_29-1-24-1 | 0.8936 | 0.8936 | 1.0000 | 0.9438 |
| physics_07_29-1-28-1 | 0.9071 | 0.9082 | 0.9987 | 0.9513 |
| physics_07_29-1-31-1 | 0.9724 | 0.9724 | 1.0000 | 0.9860 |
| physics_07_29-2-17-2 | 0.9438 | 0.9438 | 1.0000 | 0.9711 |
| physics_07_29-2-18-2 | 0.9951 | 0.9951 | 1.0000 | 0.9975 |
| physics_07_29-2-19-2 | 0.9039 | 0.9041 | 0.9996 | 0.9495 |
| physics_07_29-2-21-2 | 0.9643 | 0.9662 | 0.9979 | 0.9818 |
| physics_07_29-2-22-2 | 0.9807 | 0.9820 | 0.9987 | 0.9903 |
| physics_07_29-2-23-2 | 0.9743 | 0.9761 | 0.9981 | 0.9870 |
| physics_07_29-2-24-2 | 0.8161 | 0.8214 | 0.9910 | 0.8982 |
| physics_07_29-2-28-2 | 0.6552 | 0.6572 | 0.9863 | 0.7888 |
| physics_07_29-2-31-2 | 0.9625 | 0.9625 | 1.0000 | 0.9809 |
| physics_07_29-3-17-3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_29-3-18-3 | 0.9902 | 1.0000 | 0.9902 | 0.9951 |
| physics_07_29-3-19-3 | 0.9385 | 0.9439 | 0.9936 | 0.9681 |
| physics_07_29-3-21-3 | 0.9250 | 0.9414 | 0.9814 | 0.9610 |
| physics_07_29-3-22-3 | 0.9936 | 1.0000 | 0.9936 | 0.9968 |
| physics_07_29-3-23-3 | 0.9669 | 0.9777 | 0.9887 | 0.9832 |
| physics_07_29-3-24-3 | 0.8163 | 0.8690 | 0.9273 | 0.8972 |
| physics_07_29-3-28-3 | 0.6932 | 0.7055 | 0.9472 | 0.8086 |
| physics_07_29-3-31-3 | 0.9290 | 0.9289 | 1.0000 | 0.9631 |
| physics_07_31-1-17-1 | 0.9875 | 0.9875 | 1.0000 | 0.9937 |
| physics_07_31-1-18-1 | 0.9803 | 0.9950 | 0.9852 | 0.9901 |
| physics_07_31-1-19-1 | 0.9232 | 0.9232 | 1.0000 | 0.9601 |
| physics_07_31-1-21-1 | 0.9506 | 0.9519 | 0.9985 | 0.9747 |
| physics_07_31-1-22-1 | 0.9974 | 1.0000 | 0.9974 | 0.9987 |
| physics_07_31-1-23-1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|  |  |  | Continued.. |  |
|  |  |  |  |  |


| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| physics_07_31-1-24-1 | 0.8932 | 0.8955 | 0.9968 | 0.9434 |
| physics_07_31-1-28-1 | 0.9023 | 0.9092 | 0.9914 | 0.9485 |
| physics_07_31-1-29-1 | 0.9860 | 0.9872 | 0.9987 | 0.9929 |
| physics_07_31-2-17-2 | 0.9500 | 0.9497 | 1.0000 | 0.9742 |
| physics_07_31-2-18-2 | 0.9672 | 0.9949 | 0.9720 | 0.9833 |
| physics_07_31-2-19-2 | 0.9067 | 0.9093 | 0.9960 | 0.9507 |
| physics_07_31-2-21-2 | 0.9583 | 0.9656 | 0.9921 | 0.9787 |
| physics_07_31-2-22-2 | 0.9769 | 0.9819 | 0.9948 | 0.9883 |
| physics_07_31-2-23-2 | 0.9761 | 0.9761 | 1.0000 | 0.9879 |
| physics_07_31-2-24-2 | 0.8075 | 0.8215 | 0.9773 | 0.8926 |
| physics_07_31-2-28-2 | 0.6415 | 0.6548 | 0.9533 | 0.7764 |
| physics_07_31-2-29-2 | 0.9063 | 0.9130 | 0.9915 | 0.9506 |
| physics_07_31-3-17-3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_31-3-18-3 | 0.9689 | 1.0000 | 0.9689 | 0.9842 |
| physics_07_31-3-19-3 | 0.9341 | 0.9480 | 0.9837 | 0.9655 |
| physics_07_31-3-21-3 | 0.9328 | 0.9442 | 0.9869 | 0.9651 |
| physics_07_31-3-22-3 | 0.9936 | 1.0000 | 0.9936 | 0.9968 |
| physics_07_31-3-23-3 | 0.9779 | 0.9779 | 1.0000 | 0.9888 |
| physics_07_31-3-24-3 | 0.8323 | 0.8673 | 0.9516 | 0.9075 |
| physics_07_31-3-28-3 | 0.6764 | 0.6953 | 0.9385 | 0.7988 |
| physics_07_31-3-29-3 | 0.8332 | 0.8427 | 0.9851 | 0.9083 |
| Min |  |  |  |  |
| Max | 0.6334 | 0.6528 | 0.7437 | 0.7684 |
| Avg | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Std Dev | 0.9200 | 0.9324 | 0.9848 | 0.9554 |

## G. 4 \#\#physics, SAME SESSION, DIFFERENT ANNOTATOR

| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| physics_07_17-1-2 | 0.9438 | 0.9438 | 1.0000 | 0.9711 |
| physics_07_17-1-3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_17-2-1 | 0.9688 | 0.9873 | 0.9810 | 0.9841 |
| physics_07_17-2-3 | 0.9813 | 1.0000 | 0.9813 | 0.9905 |
| physics_07_17-3-1 | 0.9875 | 0.9875 | 1.0000 | 0.9937 |
| physics_07_17-3-2 | 0.9438 | 0.9438 | 1.0000 | 0.9711 |
| physics_07_18-1-2 | 0.9951 | 0.9951 | 1.0000 | 0.9975 |
| physics_07_18-1-3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_18-2-1 | 0.9951 | 0.9951 | 1.0000 | 0.9975 |
| physics_07_18-2-3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_18-3-1 | 0.9951 | 0.9951 | 1.0000 | 0.9975 |
| physics_07_18-3-2 | 0.9951 | 0.9951 | 1.0000 | 0.9975 |
| physics_07_19-1-2 | 0.9003 | 0.9064 | 0.9920 | 0.9473 |
| physics_07_19-1-3 | 0.9357 | 0.9426 | 0.9919 | 0.9666 |
| physics_07_19-2-1 | 0.9148 | 0.9277 | 0.9843 | 0.9552 |
| physics_07_19-2-3 | 0.9369 | 0.9474 | 0.9876 | 0.9671 |
| physics_07_19-3-1 | 0.9212 | 0.9271 | 0.9926 | 0.9588 |
| physics_07_19-3-2 | 0.9095 | 0.9113 | 0.9969 | 0.9522 |
| physics_07_21-1-2 | 0.9651 | 0.9651 | 1.0000 | 0.9822 |
| physics_07_21-1-3 | 0.9409 | 0.9409 | 1.0000 | 0.9696 |
| physics_07_21-2-1 | 0.9518 | 0.9518 | 1.0000 | 0.9753 |
| physics_07_21-2-3 | 0.9409 | 0.9409 | 1.0000 | 0.9696 |
| physics_07_21-3-1 | 0.9512 | 0.9518 | 0.9994 | 0.9750 |
| physics_07_21-3-2 | 0.9645 | 0.9651 | 0.9994 | 0.9819 |
| physics_07_22-1-2 | 0.9820 | 0.9820 | 1.0000 | 0.9909 |
| physics_07_22-1-3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_22-2-1 | 0.9961 | 1.0000 | 0.9961 | 0.9981 |
| physics_07_22-2-3 | 0.9961 | 1.0000 | 0.9961 | 0.9981 |
| physics_07_22-3-1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| physics_07_22-3-2 | 0.9820 | 0.9820 | 1.0000 | 0.9909 |
| physics_07_23-1-2 | 0.9761 | 0.9761 | 1.0000 | 0.9879 |
| physics_07_23-1-3 | 0.9779 | 0.9779 | 1.0000 | 0.9888 |
|  |  |  | Continued... |  |


| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| physics_07_23-2-1 | 0.9963 | 1.0000 | 0.9963 | 0.9982 |
| physics_07_23-2-3 | 0.9816 | 0.9815 | 1.0000 | 0.9907 |
| physics_07_23-3-1 | 0.9945 | 1.0000 | 0.9945 | 0.9972 |
| physics_07_23-3-2 | 0.9816 | 0.9815 | 1.0000 | 0.9907 |
| physics_07_24-1-2 | 0.8206 | 0.8210 | 0.9987 | 0.9012 |
| physics_07_24-1-3 | 0.8663 | 0.8668 | 0.9988 | 0.9281 |
| physics_07_24-2-1 | 0.8770 | 0.8968 | 0.9745 | 0.9340 |
| physics_07_24-2-3 | 0.8506 | 0.8682 | 0.9752 | 0.9186 |
| physics_07_24-3-1 | 0.8959 | 0.8960 | 0.9995 | 0.9449 |
| physics_07_24-3-2 | 0.8208 | 0.8208 | 0.9993 | 0.9013 |
| physics_07_28-1-2 | 0.6609 | 0.6582 | 0.9995 | 0.7937 |
| physics_07_28-1-3 | 0.6926 | 0.6902 | 0.9996 | 0.8165 |
| physics_07_28-2-1 | 0.7266 | 0.9459 | 0.7414 | 0.8313 |
| physics_07_28-2-3 | 0.7180 | 0.7826 | 0.8141 | 0.7980 |
| physics_07_28-3-1 | 0.7888 | 0.9437 | 0.8161 | 0.8753 |
| physics_07_28-3-2 | 0.7072 | 0.7292 | 0.8773 | 0.7964 |
| physics_07_29-1-2 | 0.9093 | 0.9093 | 1.0000 | 0.9525 |
| physics_07_29-1-3 | 0.8387 | 0.8387 | 1.0000 | 0.9123 |
| physics_07_29-2-1 | 0.9772 | 0.9871 | 0.9899 | 0.9885 |
| physics_07_29-2-3 | 0.8447 | 0.8452 | 0.9976 | 0.9151 |
| physics_07_29-3-1 | 0.9384 | 0.9873 | 0.9498 | 0.9682 |
| physics_07_29-3-2 | 0.8991 | 0.9256 | 0.9667 | 0.9457 |
| physics_07_31-1-2 | 0.9684 | 0.9701 | 0.9980 | 0.9838 |
| physics_07_31-1-3 | 0.9329 | 0.9343 | 0.9979 | 0.9650 |
| physics_07_31-2-1 | 0.9822 | 0.9859 | 0.9959 | 0.9909 |
| physics_07_31-2-3 | 0.9408 | 0.9418 | 0.9979 | 0.9690 |
| physics_07_31-3-1 | 0.9763 | 0.9878 | 0.9878 | 0.9878 |
| physics_07_31-3-2 | 0.9744 | 0.9817 | 0.9918 | 0.9867 |
| Min |  |  |  |  |
| Max | 0.6609 | 0.6582 | 0.7414 | 0.7937 |
| Avg | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|  | 0.9252 | 0.9369 | 0.9826 | 0.9573 |
|  |  |  | Continued... |  |
|  |  |  |  |  |


| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| Std Dev | 0.0860 | 0.0772 | 0.0485 | 0.0542 |

## G. 5 \#python, SAME ANNOTATOR, DIFFERENT SESSION

| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| python_07_17-1-18-1 | 0.7304 | 0.7638 | 0.8550 | 0.8069 |
| python_07_17-1-19-1 | 0.7095 | 0.7589 | 0.8207 | 0.7886 |
| python_07_17-1-21-1 | 0.7001 | 0.7614 | 0.8257 | 0.7922 |
| python_07_17-1-22-1 | 0.7061 | 0.6459 | 0.8573 | 0.7367 |
| python_07_17-1-23-1 | 0.7398 | 0.7363 | 0.8687 | 0.7970 |
| python_07_17-1-24-1 | 0.6468 | 0.5816 | 0.8770 | 0.6994 |
| python_07_17-1-28-1 | 0.7188 | 0.7994 | 0.7723 | 0.7856 |
| python_07_17-1-29-1 | 0.7489 | 0.7459 | 0.8722 | 0.8041 |
| python_07_17-1-31-1 | 0.7069 | 0.7258 | 0.8501 | 0.7831 |
| python_07_17-2-18-2 | 0.7416 | 0.7400 | 0.9097 | 0.8161 |
| python_07_17-2-19-2 | 0.6745 | 0.6820 | 0.8699 | 0.7646 |
| python_07_17-2-21-2 | 0.7191 | 0.7368 | 0.8968 | 0.8090 |
| python_07_17-2-22-2 | 0.6957 | 0.6390 | 0.8783 | 0.7398 |
| python_07_17-2-23-2 | 0.7398 | 0.7671 | 0.8631 | 0.8123 |
| python_07_17-2-24-2 | 0.6491 | 0.5678 | 0.9305 | 0.7052 |
| python_07_17-2-28-2 | 0.7290 | 0.6859 | 0.8902 | 0.7748 |
| python_07_17-2-29-2 | 0.7368 | 0.7257 | 0.8952 | 0.8016 |
| python_07_17-2-31-2 | 0.7071 | 0.7112 | 0.8825 | 0.7876 |
| python_07_17-3-18-3 | 0.7366 | 0.7572 | 0.8723 | 0.8107 |
| python_07_17-3-19-3 | 0.6950 | 0.6811 | 0.8652 | 0.7622 |
| python_07_17-3-21-3 | 0.7287 | 0.7183 | 0.9047 | 0.8008 |
| python_07_17-3-22-3 | 0.7228 | 0.6729 | 0.8549 | 0.7531 |
| python_07_17-3-23-3 | 0.7412 | 0.7317 | 0.8750 | 0.7969 |
| python_07_17-3-24-3 | 0.6547 | 0.5895 | 0.8830 | 0.7070 |
| python_07_17-3-28-3 | 0.7497 | 0.7103 | 0.8765 | 0.7847 |
|  |  |  | Continued.. |  |


| File | Accuracy | Precision | Recall | core |
| :---: | :---: | :---: | :---: | :---: |
| python_07_17-3-29-3 | 0.7475 | 0.7392 | 0.8756 | 0.8017 |
| python_07_17-3-31-3 | 0.7004 | 0.6687 | 0.8966 | 0.7661 |
| python_07_18-1-17-1 | 0.7252 | 0.7860 | 0.8056 | 0.7956 |
| python_07_18-1-19-1 | 0.7026 | 0.7765 | 0.7717 | 0.7741 |
| python_07_18-1-21-1 | 0.7001 | 0.7759 | 0.7972 | 0.7864 |
| python_07_18-1-22-1 | 0.7558 | 0.7126 | 0.8224 | 0.7636 |
| python_07_18-1-23-1 | 0.7727 | 0.7794 | 0.8557 | 0.8158 |
| python_07_18-1-24-1 | 0.6882 | 0.6200 | 0.8639 | 0.7219 |
| python_07_18-1-28-1 | 0.7306 | 0.8324 | 0.7465 | 0.7871 |
| python_07_18-1-29-1 | 0.7901 | 0.8028 | 0.8549 | 0.8280 |
| python_07_18-1-31-1 | 0.7429 | 0.7635 | 0.8501 | 0.8045 |
| python_07_18-2-17-2 | 0.7526 | 0.8468 | 0.7877 | 0.8162 |
| python_07_18-2-19-2 | 0.7018 | 0.7482 | 0.7678 | 0.7579 |
| python_07_18-2-21-2 | 0.7448 | 0.8003 | 0.8199 | 0.8099 |
| python_07_18-2-22-2 | 0.7704 | 0.7527 | 0.7948 | 0.7732 |
| python_07_18-2-23-2 | 0.7531 | 0.8315 | 0.7795 | 0.8046 |
| python_07_18-2-24-2 | 0.7475 | 0.6645 | 0.8893 | 0.7607 |
| python_07_18-2-28-2 | 0.7884 | 0.7795 | 0.8309 | 0.8044 |
| python_07_18-2-29-2 | 0.7858 | 0.8197 | 0.8197 | 0.8197 |
| python_07_18-2-31-2 | 0.7521 | 0.7770 | 0.8376 | 0.8062 |
| python_07_18-3-17-3 | 0.7280 | 0.7918 | 0.7958 | 0.7938 |
| python_07_18-3-19-3 | 0.7159 | 0.7151 | 0.8266 | 0.7668 |
| python_07_18-3-21-3 | 0.7520 | 0.7526 | 0.8767 | 0.8100 |
| python_07_18-3-22-3 | 0.7667 | 0.7356 | 0.8244 | 0.7775 |
| python_07_18-3-23-3 | 0.7751 | 0.7773 | 0.8587 | 0.8160 |
| python_07_18-3-24-3 | 0.7057 | 0.6403 | 0.8585 | 0.7335 |
| python_07_18-3-28-3 | 0.7890 | 0.7639 | 0.8604 | 0.8093 |
| python_07_18-3-29-3 | 0.7871 | 0.7964 | 0.8525 | 0.8235 |
| python_07_18-3-31-3 | 0.7317 | 0.7043 | 0.8786 | 0.7818 |
| python_07_19-1-17-1 | 0.7143 | 0.7782 | 0.7970 | 0.7875 |
| python_07_19-1-18-1 | 0.7341 | 0.7663 | 0.8581 | 0.8096 |
| python_07_19-1-21-1 | 0.7076 | 0.7675 | 0.8288 | 0.7970 |

Continued...

| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| python_07_19-1-22-1 | 0.7201 | 0.6575 | 0.8690 | 0.7486 |
| python_07_19-1-23-1 | 0.7369 | 0.7342 | 0.8662 | 0.7948 |
| python_07_19-1-24-1 | 0.6603 | 0.5930 | 0.8762 | 0.7073 |
| python_07_19-1-28-1 | 0.7379 | 0.8192 | 0.7791 | 0.7986 |
| python_07_19-1-29-1 | 0.7559 | 0.7549 | 0.8690 | 0.8080 |
| python_07_19-1-31-1 | 0.7068 | 0.7318 | 0.8345 | 0.7798 |
| python_07_19-2-17-2 | 0.7493 | 0.8554 | 0.7707 | 0.8108 |
| python_07_19-2-18-2 | 0.7596 | 0.7958 | 0.8321 | 0.8135 |
| python_07_19-2-21-2 | 0.7359 | 0.7945 | 0.8118 | 0.8031 |
| python_07_19-2-22-2 | 0.7683 | 0.7449 | 0.8054 | 0.7739 |
| python_07_19-2-23-2 | 0.7379 | 0.8171 | 0.7707 | 0.7933 |
| python_07_19-2-24-2 | 0.7306 | 0.6479 | 0.8819 | 0.7470 |
| python_07_19-2-28-2 | 0.7816 | 0.7720 | 0.8273 | 0.7987 |
| python_07_19-2-29-2 | 0.7695 | 0.8042 | 0.8089 | 0.8065 |
| python_07_19-2-31-2 | 0.7414 | 0.7770 | 0.8132 | 0.7947 |
| python_07_19-3-17-3 | 0.7271 | 0.8364 | 0.7275 | 0.7782 |
| python_07_19-3-18-3 | 0.7430 | 0.8288 | 0.7594 | 0.7926 |
| python_07_19-3-21-3 | 0.7699 | 0.8021 | 0.8208 | 0.8114 |
| python_07_19-3-22-3 | 0.7829 | 0.7900 | 0.7641 | 0.7768 |
| python_07_19-3-23-3 | 0.7744 | 0.8255 | 0.7752 | 0.7995 |
| python_07_19-3-24-3 | 0.7386 | 0.6950 | 0.7947 | 0.7415 |
| python_07_19-3-28-3 | 0.7960 | 0.8108 | 0.7932 | 0.8019 |
| python_07_19-3-29-3 | 0.7924 | 0.8499 | 0.7817 | 0.8144 |
| python_07_19-3-31-3 | 0.7362 | 0.7461 | 0.7849 | 0.7651 |
| python_07_21-1-17-1 | 0.7157 | 0.7480 | 0.8625 | 0.8012 |
| python_07_21-1-18-1 | 0.7293 | 0.7491 | 0.8856 | 0.8117 |
| python_07_21-1-19-1 | 0.7056 | 0.7379 | 0.8594 | 0.7940 |
| python_07_21-1-22-1 | 0.6989 | 0.6326 | 0.8878 | 0.7388 |
| python_07_21-1-23-1 | 0.7142 | 0.7027 | 0.8911 | 0.7858 |
| python_07_21-1-24-1 | 0.6452 | 0.5773 | 0.9065 | 0.7054 |
| python_07_21-1-28-1 | 0.7378 | 0.7983 | 0.8122 | 0.8052 |
| python_07_21-1-29-1 | 0.7502 | 0.7400 | 0.8902 | 0.8081 |
|  |  |  | Continued.. |  |


| File | Accuracy | Precision | Recall | core |
| :---: | :---: | :---: | :---: | :---: |
| python_07_21-1-31-1 | 0.7140 | 0.7218 | 0.8789 | 0.7927 |
| python_07_21-2-17-2 | 0.7483 | 0.8388 | 0.7910 | 0.8142 |
| python_07_21-2-18-2 | 0.7559 | 0.7852 | 0.8433 | 0.8132 |
| python_07_21-2-19-2 | 0.6951 | 0.7343 | 0.7810 | 0.7569 |
| python_07_21-2-22-2 | 0.7567 | 0.7324 | 0.7971 | 0.7634 |
| python_07_21-2-23-2 | 0.7427 | 0.8132 | 0.7862 | 0.7995 |
| python_07_21-2-24-2 | 0.7362 | 0.6502 | 0.8986 | 0.7545 |
| python_07_21-2-28-2 | 0.7782 | 0.7635 | 0.8352 | 0.7977 |
| python_07_21-2-29-2 | 0.7714 | 0.8047 | 0.8124 | 0.8085 |
| python_07_21-2-31-2 | 0.7379 | 0.7673 | 0.8240 | 0.7946 |
| python_07_21-3-17-3 | 0.7209 | 0.8107 | 0.7513 | 0.7799 |
| python_07_21-3-18-3 | 0.7476 | 0.8165 | 0.7863 | 0.8011 |
| python_07_21-3-19-3 | 0.7131 | 0.7382 | 0.7628 | 0.7503 |
| python_07_21-3-22-3 | 0.7861 | 0.7931 | 0.7677 | 0.7802 |
| python_07_21-3-23-3 | 0.7801 | 0.8183 | 0.7984 | 0.8082 |
| python_07_21-3-24-3 | 0.7416 | 0.6941 | 0.8088 | 0.7470 |
| python_07_21-3-28-3 | 0.8082 | 0.8210 | 0.8076 | 0.8142 |
| python_07_21-3-29-3 | 0.7848 | 0.8341 | 0.7873 | 0.8100 |
| python_07_21-3-31-3 | 0.7454 | 0.7393 | 0.8259 | 0.7802 |
| python_07_22-1-17-1 | 0.7214 | 0.8486 | 0.7066 | 0.7711 |
| python_07_22-1-18-1 | 0.7227 | 0.8633 | 0.6879 | 0.7657 |
| python_07_22-1-19-1 | 0.6874 | 0.8580 | 0.6309 | 0.7271 |
| python_07_22-1-21-1 | 0.6918 | 0.8357 | 0.6908 | 0.7564 |
| python_07_22-1-23-1 | 0.7742 | 0.8662 | 0.7287 | 0.7915 |
| python_07_22-1-24-1 | 0.7624 | 0.7371 | 0.7663 | 0.7514 |
| python_07_22-1-28-1 | 0.6960 | 0.8830 | 0.6274 | 0.7336 |
| python_07_22-1-29-1 | 0.7894 | 0.8907 | 0.7336 | 0.8046 |
| python_07_22-1-31-1 | 0.7213 | 0.8216 | 0.7051 | 0.7589 |
| python_07_22-2-17-2 | 0.7015 | 0.8995 | 0.6438 | 0.7505 |
| python_07_22-2-18-2 | 0.7266 | 0.8866 | 0.6493 | 0.7496 |
| python_07_22-2-19-2 | 0.6909 | 0.8493 | 0.5975 | 0.7015 |
| python_07_22-2-21-2 | 0.7160 | 0.8576 | 0.6857 | 0.7621 |

Continued...

| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| python_07_22-2-23-2 | 0.7141 | 0.9098 | 0.6235 | 0.7399 |
| python_07_22-2-24-2 | 0.7882 | 0.7681 | 0.7600 | 0.7640 |
| python_07_22-2-28-2 | 0.7806 | 0.8473 | 0.7088 | 0.7719 |
| python_07_22-2-29-2 | 0.7517 | 0.8929 | 0.6614 | 0.7599 |
| python_07_22-2-31-2 | 0.7173 | 0.8502 | 0.6562 | 0.7408 |
| python_07_22-3-17-3 | 0.7162 | 0.8332 | 0.7110 | 0.7673 |
| python_07_22-3-18-3 | 0.7337 | 0.8455 | 0.7195 | 0.7774 |
| python_07_22-3-19-3 | 0.7245 | 0.7820 | 0.7104 | 0.7445 |
| python_07_22-3-21-3 | 0.7750 | 0.8245 | 0.7962 | 0.8101 |
| python_07_22-3-23-3 | 0.7850 | 0.8604 | 0.7515 | 0.8023 |
| python_07_22-3-24-3 | 0.7481 | 0.7198 | 0.7631 | 0.7408 |
| python_07_22-3-28-3 | 0.7915 | 0.8238 | 0.7624 | 0.7919 |
| python_07_22-3-29-3 | 0.7894 | 0.8772 | 0.7424 | 0.8042 |
| python_07_22-3-31-3 | 0.7384 | 0.7626 | 0.7577 | 0.7602 |
| python_07_23-1-17-1 | 0.7242 | 0.8136 | 0.7585 | 0.7851 |
| python_07_23-1-18-1 | 0.7445 | 0.8223 | 0.7807 | 0.8010 |
| python_07_23-1-19-1 | 0.7116 | 0.8166 | 0.7263 | 0.7688 |
| python_07_23-1-21-1 | 0.6945 | 0.7965 | 0.7507 | 0.7729 |
| python_07_23-1-22-1 | 0.7803 | 0.7644 | 0.7832 | 0.7737 |
| python_07_23-1-24-1 | 0.7341 | 0.6787 | 0.8209 | 0.7431 |
| python_07_23-1-28-1 | 0.7225 | 0.8693 | 0.6874 | 0.7677 |
| python_07_23-1-29-1 | 0.7901 | 0.8418 | 0.7941 | 0.8173 |
| python_07_23-1-31-1 | 0.7307 | 0.7902 | 0.7721 | 0.7811 |
| python_07_23-2-17-2 | 0.7606 | 0.8163 | 0.8474 | 0.8316 |
| python_07_23-2-18-2 | 0.7568 | 0.7681 | 0.8797 | 0.8201 |
| python_07_23-2-19-2 | 0.6868 | 0.7061 | 0.8303 | 0.7632 |
| python_07_23-2-21-2 | 0.7270 | 0.7598 | 0.8605 | 0.8070 |
| python_07_23-2-22-2 | 0.7422 | 0.6980 | 0.8396 | 0.7623 |
| python_07_23-2-24-2 | 0.7048 | 0.6170 | 0.9115 | 0.7359 |
| python_07_23-2-28-2 | 0.7576 | 0.7273 | 0.8596 | 0.7879 |
| python_07_23-2-29-2 | 0.7634 | 0.7721 | 0.8538 | 0.8109 |
| python_07_23-2-31-2 | 0.7387 | 0.7496 | 0.8640 | 0.8028 |
|  |  |  | Continued.. |  |
| py 07 |  |  | 0 |  |


| File | Accuracy | Precision | Recall | F-score |
| :---: | :---: | :---: | :---: | :---: |
| python_07_23-3-17-3 | 0.7275 | 0.8127 | 0.7613 | 0.7862 |
| python_07_23-3-18-3 | 0.7440 | 0.8133 | 0.7838 | 0.7983 |
| python_07_23-3-19-3 | 0.7200 | 0.7444 | 0.7682 | 0.7561 |
| python_07_23-3-21-3 | 0.7662 | 0.7841 | 0.8447 | 0.8133 |
| python_07_23-3-22-3 | 0.7865 | 0.7875 | 0.7782 | 0.7828 |
| python_07_23-3-24-3 | 0.7330 | 0.6816 | 0.8147 | 0.7422 |
| python_07_23-3-28-3 | 0.7899 | 0.7960 | 0.8016 | 0.7988 |
| python_07_23-3-29-3 | 0.7858 | 0.8315 | 0.7931 | 0.8118 |
| python_07_23-3-31-3 | 0.7419 | 0.7379 | 0.8192 | 0.7765 |
| python_07_24-1-17-1 | 0.6987 | 0.8793 | 0.6332 | 0.7362 |
| python_07_24-1-18-1 | 0.6844 | 0.9042 | 0.5826 | 0.7086 |
| python_07_24-1-19-1 | 0.6483 | 0.9036 | 0.5231 | 0.6626 |
| python_07_24-1-21-1 | 0.6716 | 0.8683 | 0.6198 | 0.7233 |
| python_07_24-1-22-1 | 0.7951 | 0.8837 | 0.6596 | 0.7554 |
| python_07_24-1-23-1 | 0.7624 | 0.9236 | 0.6498 | 0.7629 |
| python_07_24-1-28-1 | 0.6604 | 0.9086 | 0.5459 | 0.6820 |
| python_07_24-1-29-1 | 0.7701 | 0.9376 | 0.6545 | 0.7709 |
| python_07_24-1-31-1 | 0.6926 | 0.8591 | 0.6051 | 0.7100 |
| python_07_24-2-17-2 | 0.6760 | 0.9080 | 0.5957 | 0.7194 |
| python_07_24-2-18-2 | 0.7124 | 0.9123 | 0.6014 | 0.7250 |
| python_07_24-2-19-2 | 0.6663 | 0.8661 | 0.5334 | 0.6602 |
| python_07_24-2-21-2 | 0.7252 | 0.9072 | 0.6524 | 0.7590 |
| python_07_24-2-22-2 | 0.7690 | 0.8863 | 0.6089 | 0.7219 |
| python_07_24-2-23-2 | 0.6952 | 0.9298 | 0.5762 | 0.7115 |
| python_07_24-2-28-2 | 0.7787 | 0.9044 | 0.6456 | 0.7534 |
| python_07_24-2-29-2 | 0.7386 | 0.9296 | 0.6059 | 0.7337 |
| python_07_24-2-31-2 | 0.7051 | 0.8718 | 0.6106 | 0.7182 |
| python_07_24-3-17-3 | 0.7077 | 0.8808 | 0.6427 | 0.7431 |
| python_07_24-3-18-3 | 0.7143 | 0.8893 | 0.6373 | 0.7425 |
| python_07_24-3-19-3 | 0.7175 | 0.8352 | 0.6229 | 0.7136 |
| python_07_24-3-21-3 | 0.7805 | 0.8775 | 0.7390 | 0.8023 |
| python_07_24-3-22-3 | 0.7908 | 0.8802 | 0.6678 | 0.7594 |

Continued...

| File | Accuracy | Precision | Recall | core |
| :---: | :---: | :---: | :---: | :---: |
| python_07_24-3-23-3 | 0.7700 | 0.9019 | 0.6774 | 0.7737 |
| python_07_24-3-28-3 | 0.7896 | 0.8748 | 0.6951 | 0.7747 |
| python_07_24-3-29-3 | 0.7551 | 0.8951 | 0.6567 | 0.7576 |
| python_07_24-3-31-3 | 0.7369 | 0.8132 | 0.6739 | 0.7370 |
| python_07_28-1-17-1 | 0.7072 | 0.7366 | 0.8704 | 0.7979 |
| python_07_28-1-18-1 | 0.7301 | 0.7348 | 0.9236 | 0.8184 |
| python_07_28-1-19-1 | 0.7184 | 0.7287 | 0.9137 | 0.8108 |
| python_07_28-1-21-1 | 0.7145 | 0.7410 | 0.9036 | 0.8142 |
| python_07_28-1-22-1 | 0.6691 | 0.6017 | 0.9169 | 0.7266 |
| python_07_28-1-23-1 | 0.7141 | 0.6898 | 0.9339 | 0.7935 |
| python_07_28-1-24-1 | 0.6076 | 0.5481 | 0.9248 | 0.6883 |
| python_07_28-1-29-1 | 0.7352 | 0.7119 | 0.9273 | 0.8055 |
| python_07_28-1-31-1 | 0.7046 | 0.7019 | 0.9128 | 0.7936 |
| python_07_28-2-17-2 | 0.7455 | 0.8535 | 0.7666 | 0.8077 |
| python_07_28-2-18-2 | 0.7640 | 0.8004 | 0.8333 | 0.8165 |
| python_07_28-2-19-2 | 0.6956 | 0.7460 | 0.7570 | 0.7515 |
| python_07_28-2-21-2 | 0.7538 | 0.8152 | 0.8132 | 0.8142 |
| python_07_28-2-22-2 | 0.7611 | 0.7523 | 0.7675 | 0.7598 |
| python_07_28-2-23-2 | 0.7429 | 0.8306 | 0.7610 | 0.7943 |
| python_07_28-2-24-2 | 0.7598 | 0.6821 | 0.8757 | 0.7669 |
| python_07_28-2-29-2 | 0.7816 | 0.8232 | 0.8054 | 0.8142 |
| python_07_28-2-31-2 | 0.7459 | 0.7834 | 0.8115 | 0.7972 |
| python_07_28-3-17-3 | 0.7223 | 0.8078 | 0.7584 | 0.7824 |
| python_07_28-3-18-3 | 0.7487 | 0.8065 | 0.8042 | 0.8053 |
| python_07_28-3-19-3 | 0.7118 | 0.7285 | 0.7812 | 0.7539 |
| python_07_28-3-21-3 | 0.7777 | 0.7920 | 0.8562 | 0.8228 |
| python_07_28-3-22-3 | 0.7752 | 0.7730 | 0.7720 | 0.7725 |
| python_07_28-3-23-3 | 0.7763 | 0.8022 | 0.8158 | 0.8089 |
| python_07_28-3-24-3 | 0.7272 | 0.6740 | 0.8169 | 0.7386 |
| python_07_28-3-29-3 | 0.7854 | 0.8213 | 0.8074 | 0.8143 |
| python_07_28-3-31-3 | 0.7521 | 0.7397 | 0.8440 | 0.7884 |
| python_07_29-1-17-1 | 0.7167 | 0.7927 | 0.7764 | 0.7845 |

Continued...

| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| python_07_29-1-18-1 | 0.7490 | 0.8065 | 0.8142 | 0.8103 |
| python_07_29-1-19-1 | 0.7037 | 0.7858 | 0.7578 | 0.7715 |
| python_07_29-1-21-1 | 0.7008 | 0.7865 | 0.7797 | 0.7831 |
| python_07_29-1-22-1 | 0.7616 | 0.7277 | 0.8036 | 0.7638 |
| python_07_29-1-23-1 | 0.7731 | 0.7904 | 0.8358 | 0.8125 |
| python_07_29-1-24-1 | 0.7143 | 0.6484 | 0.8523 | 0.7365 |
| python_07_29-1-28-1 | 0.7304 | 0.8502 | 0.7233 | 0.7817 |
| python_07_29-1-31-1 | 0.7397 | 0.7701 | 0.8292 | 0.7985 |
| python_07_29-2-17-2 | 0.7465 | 0.8399 | 0.7863 | 0.8122 |
| python_07_29-2-18-2 | 0.7615 | 0.7900 | 0.8465 | 0.8173 |
| python_07_29-2-19-2 | 0.6964 | 0.7360 | 0.7806 | 0.7576 |
| python_07_29-2-21-2 | 0.7399 | 0.7904 | 0.8273 | 0.8084 |
| python_07_29-2-22-2 | 0.7593 | 0.7341 | 0.8015 | 0.7663 |
| python_07_29-2-23-2 | 0.7442 | 0.8163 | 0.7842 | 0.8000 |
| python_07_29-2-24-2 | 0.7411 | 0.6545 | 0.9025 | 0.7587 |
| python_07_29-2-28-2 | 0.7885 | 0.7722 | 0.8455 | 0.8072 |
| python_07_29-2-31-2 | 0.7466 | 0.7674 | 0.8442 | 0.8039 |
| python_07_29-3-17-3 | 0.7148 | 0.7901 | 0.7714 | 0.7806 |
| python_07_29-3-18-3 | 0.7390 | 0.7882 | 0.8153 | 0.8015 |
| python_07_29-3-19-3 | 0.7084 | 0.7145 | 0.8061 | 0.7575 |
| python_07_29-3-21-3 | 0.7557 | 0.7578 | 0.8740 | 0.8118 |
| python_07_29-3-22-3 | 0.7626 | 0.7391 | 0.8036 | 0.7700 |
| python_07_29-3-23-3 | 0.7688 | 0.7813 | 0.8357 | 0.8076 |
| python_07_29-3-24-3 | 0.7032 | 0.6401 | 0.8474 | 0.7293 |
| python_07_29-3-28-3 | 0.7909 | 0.7704 | 0.8522 | 0.8092 |
| python_07_29-3-31-3 | 0.7255 | 0.7095 | 0.8437 | 0.7708 |
| python_07_31-1-17-1 | 0.7200 | 0.7766 | 0.8120 | 0.7939 |
| python_07_31-1-18-1 | 0.7535 | 0.8021 | 0.8308 | 0.8162 |
| python_07_31-1-19-1 | 0.6950 | 0.7769 | 0.7548 | 0.7657 |
| python_07_31-1-21-1 | 0.7004 | 0.7786 | 0.7927 | 0.7856 |
| python_07_31-1-22-1 | 0.7567 | 0.7164 | 0.8152 | 0.7627 |
| python_07_31-1-23-1 | 0.7706 | 0.7814 | 0.8468 | 0.8128 |
|  |  |  | Continued.. |  |
| py |  |  |  |  |


| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| python_07_31-1-24-1 | 0.6924 | 0.6274 | 0.8452 | 0.7202 |
| python_07_31-1-28-1 | 0.7232 | 0.8277 | 0.7390 | 0.7808 |
| python_07_31-1-29-1 | 0.7801 | 0.8012 | 0.8351 | 0.8178 |
| python_07_31-2-17-2 | 0.7488 | 0.8356 | 0.7965 | 0.8156 |
| python_07_31-2-18-2 | 0.7588 | 0.7988 | 0.8251 | 0.8118 |
| python_07_31-2-19-2 | 0.6929 | 0.7480 | 0.7459 | 0.7470 |
| python_07_31-2-21-2 | 0.7359 | 0.7949 | 0.8111 | 0.8029 |
| python_07_31-2-22-2 | 0.7592 | 0.7441 | 0.7788 | 0.7611 |
| python_07_31-2-23-2 | 0.7490 | 0.8313 | 0.7717 | 0.8004 |
| python_07_31-2-24-2 | 0.7328 | 0.6532 | 0.8695 | 0.7460 |
| python_07_31-2-28-2 | 0.7647 | 0.7538 | 0.8177 | 0.7845 |
| python_07_31-2-29-2 | 0.7720 | 0.8105 | 0.8041 | 0.8073 |
| python_07_31-3-17-3 | 0.7114 | 0.8246 | 0.7132 | 0.7648 |
| python_07_31-3-18-3 | 0.7438 | 0.8283 | 0.7616 | 0.7936 |
| python_07_31-3-19-3 | 0.7148 | 0.7535 | 0.7363 | 0.7448 |
| python_07_31-3-21-3 | 0.7839 | 0.8218 | 0.8191 | 0.8204 |
| python_07_31-3-22-3 | 0.7779 | 0.8060 | 0.7253 | 0.7635 |
| python_07_31-3-23-3 | 0.7850 | 0.8356 | 0.7839 | 0.8089 |
| python_07_31-3-24-3 | 0.7475 | 0.7128 | 0.7787 | 0.7443 |
| python_07_31-3-28-3 | 0.8024 | 0.8349 | 0.7731 | 0.8028 |
| python_07_31-3-29-3 | 0.7640 | 0.8343 | 0.7424 | 0.7857 |
| Min |  | 0.6076 | 0.5481 | 0.5231 |

## G. 6 \#python, SAME SESSION, DIFFERENT ANNOTATOR

| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| python_07_17-1-2 | 0.7729 | 0.8322 | 0.8446 | 0.8384 |
| python_07_17-1-3 | 0.7327 | 0.7761 | 0.8347 | 0.8043 |
| python_07_17-2-1 | 0.7247 | 0.7559 | 0.8647 | 0.8066 |
| python_07_17-2-3 | 0.7299 | 0.7553 | 0.8720 | 0.8095 |
| python_07_17-3-1 | 0.7308 | 0.7767 | 0.8348 | 0.8047 |
| python_07_17-3-2 | 0.7611 | 0.8211 | 0.8406 | 0.8307 |
| python_07_18-1-2 | 0.7641 | 0.7825 | 0.8666 | 0.8224 |
| python_07_18-1-3 | 0.7482 | 0.7828 | 0.8450 | 0.8127 |
| python_07_18-2-1 | 0.7545 | 0.8123 | 0.8156 | 0.8140 |
| python_07_18-2-3 | 0.7498 | 0.7996 | 0.8179 | 0.8087 |
| python_07_18-3-1 | 0.7549 | 0.7992 | 0.8386 | 0.8184 |
| python_07_18-3-2 | 0.7643 | 0.7854 | 0.8614 | 0.8216 |
| python_07_19-1-2 | 0.7170 | 0.7276 | 0.8539 | 0.7857 |
| python_07_19-1-3 | 0.7121 | 0.6943 | 0.8764 | 0.7748 |
| python_07_19-2-1 | 0.7305 | 0.8148 | 0.7659 | 0.7896 |
| python_07_19-2-3 | 0.7305 | 0.7381 | 0.8108 | 0.7727 |
| python_07_19-3-1 | 0.7142 | 0.8411 | 0.6992 | 0.7636 |
| python_07_19-3-2 | 0.7146 | 0.7937 | 0.7167 | 0.7532 |
| python_07_21-1-2 | 0.7354 | 0.7495 | 0.9030 | 0.8191 |
| python_07_21-1-3 | 0.7218 | 0.7031 | 0.9321 | 0.8016 |
| python_07_21-2-1 | 0.7076 | 0.7870 | 0.7921 | 0.7895 |
| python_07_21-2-3 | 0.7609 | 0.7609 | 0.8798 | 0.8160 |
| python_07_21-3-1 | 0.7068 | 0.8113 | 0.7514 | 0.7802 |
| python_07_21-3-2 | 0.7566 | 0.8273 | 0.8000 | 0.8134 |
| python_07_22-1-2 | 0.7914 | 0.8316 | 0.7229 | 0.7734 |
| python_07_22-1-3 | 0.7930 | 0.8357 | 0.7235 | 0.7756 |
| python_07_22-2-1 | 0.7922 | 0.8391 | 0.7012 | 0.7640 |
| python_07_22-2-3 | 0.7916 | 0.8568 | 0.6945 | 0.7672 |
| python_07_22-3-1 | 0.7865 | 0.7991 | 0.7411 | 0.7690 |
| python_07_22-3-2 | 0.7894 | 0.8168 | 0.7378 | 0.7753 |
| python_07_23-1-2 | 0.7561 | 0.8590 | 0.7491 | 0.8003 |
| python_07_23-1-3 | 0.7919 | 0.8273 | 0.8107 | 0.8189 |
|  |  |  | Continued.. |  |


| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| python_07_23-2-1 | 0.7661 | 0.7660 | 0.8671 | 0.8134 |
| python_07_23-2-3 | 0.7701 | 0.7633 | 0.8754 | 0.8155 |
| python_07_23-3-1 | 0.7873 | 0.8308 | 0.8017 | 0.8160 |
| python_07_23-3-2 | 0.7532 | 0.8573 | 0.7459 | 0.7977 |
| python_07_24-1-2 | 0.8033 | 0.8212 | 0.7208 | 0.7677 |
| python_07_24-1-3 | 0.7689 | 0.8040 | 0.6747 | 0.7337 |
| python_07_24-2-1 | 0.7896 | 0.8399 | 0.6806 | 0.7519 |
| python_07_24-2-3 | 0.7673 | 0.8150 | 0.6558 | 0.7267 |
| python_07_24-3-1 | 0.7840 | 0.7996 | 0.7191 | 0.7572 |
| python_07_24-3-2 | 0.8024 | 0.8008 | 0.7480 | 0.7735 |
| python_07_28-1-2 | 0.7278 | 0.6745 | 0.9281 | 0.7812 |
| python_07_28-1-3 | 0.7301 | 0.6739 | 0.9330 | 0.7826 |
| python_07_28-2-1 | 0.7279 | 0.8690 | 0.6973 | 0.7737 |
| python_07_28-2-3 | 0.8096 | 0.8082 | 0.8313 | 0.8196 |
| python_07_28-3-1 | 0.7251 | 0.8732 | 0.6878 | 0.7695 |
| python_07_28-3-2 | 0.8079 | 0.8156 | 0.8183 | 0.8169 |
| python_07_29-1-2 | 0.7869 | 0.8170 | 0.8264 | 0.8217 |
| python_07_29-1-3 | 0.7956 | 0.8148 | 0.8402 | 0.8273 |
| python_07_29-2-1 | 0.8011 | 0.8264 | 0.8399 | 0.8331 |
| python_07_29-2-3 | 0.7958 | 0.8151 | 0.8402 | 0.8274 |
| python_07_29-3-1 | 0.7899 | 0.8150 | 0.8338 | 0.8243 |
| python_07_29-3-2 | 0.7793 | 0.8088 | 0.8232 | 0.8159 |
| python_07_31-1-2 | 0.7578 | 0.7709 | 0.8629 | 0.8143 |
| python_07_31-1-3 | 0.7377 | 0.7068 | 0.8899 | 0.7878 |
| python_07_31-2-1 | 0.7540 | 0.7818 | 0.8386 | 0.8092 |
| python_07_31-2-3 | 0.7392 | 0.7146 | 0.8715 | 0.7853 |
| python_07_31-3-1 | 0.7346 | 0.8098 | 0.7493 | 0.7784 |
| python_07_31-3-2 | 0.7443 | 0.8124 | 0.7599 | 0.7853 |
| Min |  |  |  |  |
| Max | 0.7068 | 0.6739 | 0.6558 | 0.7267 |
| Avg | 0.8096 | 0.8732 | 0.9330 | 0.8384 |
|  | 0.7588 | 0.7950 | 0.8027 | 0.7950 |
|  |  | Continued.. |  |  |


| File | Accuracy | Precision | Recall | F-score |
| :--- | :--- | :--- | :--- | :--- |
| Std Dev | 0.0296 | 0.0459 | 0.0715 | 0.0259 |

## APPENDIX H: CHAT TOOLS PYTHON CODE

The following pages comprise the API documentation for the chat_tools Python module. This module provides a suite of general purpose utilities for working with several chat file formats. Many functions require that NLTK $^{1}$ and/or WordNet ${ }^{2}$ be installed on the system. This code was tested on Mac OS X and Linux operating systems and is known to work with Python version 2.5 (but should be compatible with older versions as well). The full source code will be made available as part of the NPS Chat Corpus ${ }^{3}$.

[^7]
## API Documentation

## API Documentation

September 1, 2008

## Contents

Contents ..... 1
1 Module chat_tools ..... 2
1.1 Functions ..... 2
1.2 Class Post ..... 6
1.2.1 Methods ..... 6
1.3 Class Session ..... 7
1.3.1 Methods ..... 7
1.3.2 Properties ..... 7
Index ..... 9

## 1 Module chat_tools

## chat_tools.py

This module contains a collection of tools for working with chat.

- Author: P. Adams phadams@nps.edu ${ }^{1}$
- Org: Naval Postgraduate School ${ }^{2}$
- Written: 2008-04-06
- Modified: 2008-05-30


### 1.1 Functions

| main() |
| :--- |
| Main function for chat_tools. |
| The chat_tools module should not be called directly. If so, print module information and |
| exit. |


| demo( $)$ |
| :--- |
| Provide a demo of chat_tool features. |

> time_diff(post1, post2, increment='sec')

Return time difference between two posts.
Returns time difference between two posts if time code is available in posts. Returns -1 otherwise.

Optional arguments are:
sec return time in seconds (default) min return time in minutes hour return time in hours day return time in day

$$
\begin{aligned}
& \text { get_coll_posts(chatfile=None) } \\
& \hline \text { Return posts from Colloquy chat transcript. } \\
& \text { Parses passed Colloquy transcript file or prompts user for Colloquy transcript file if none } \\
& \text { passed. Returns Post object containing posts and session start and session end. } \\
& \text { See http://colloquy.info/ for more info on Colloquy Mac OS X client. }
\end{aligned}
$$

[^8]get_lin_posts(chatfile=$=$ None $)$
Return posts from Lin Chat Corpus.

Parses passed Lin Chat Corpus XML file or prompts user for Lin XML file if none passed. Returns Post object containing post.
**Note: Lin corpus does not contain timestamp info, so posts and session start/end times will be empty.

| get_tactical_posts(chatfile=None) |
| :--- |
| Return post from tactical chat corpus. |
| Parses chat from tactical chat XML file. |


| tokenize_msg $(\mathrm{msg}$, lower=True $)$ |
| :--- |
| Return tokenized chat message. |
| Given a message string, returns a list containing all the words in the message. By default, <br> converts message to lower case; can be changed by passing False as second argument. |

getnicks(posts)
Return nicknames from posts.

Given a list of posts (time, nick, message), returns a dictionary with nicknames as key and frequency (count) as value.

## sortnicks_byfreq(nicks, direction='forward')

Return dictionary of nicknames sorted by frequency.
Given a dictionary of nicknames, returns dictionary sorted by frequency. Default sort order is ascending; change by passing 'reverse' as second argument.
stopwords_byfreq(posts, number $=50$ )
Return a list of frequency-based stopwords generated from posts.
Returns the top n most frequent words in the posts, where n default is 50 .
getalltypes(posts)

Return type and frequency for all words in post messages.
getalltokens(posts)
Return list of all tokens in passed posts.
getdocvector $($ posts $)$
Return document vector (list) that represents given posts.
Returned vector dimensions represent all the tokenized, alpha-sorted words in message
component of the posts. The value of each dimension is the overall document count for the
represented word.
savesession(session, filename $=$ None $)$
Save chat session to file.
Saves chat session to file. If no filename passed, presents save file dialog. File can be loaded with loadsession(filename).

| loadsession $($ filename $=$ None $)$ |
| :--- |
| Load pickled chat session. |
| Loads from passed filename. If no filename, presents choose file dialog. |


| anonymize(posts) |
| :--- |
| Anonymize posts (not yet implemented). |
| This function removes user name and nickname information from a set of posts and returns |
| a list containing two items: 1) dictionary of anonymized names to real user names, |
| nicknames; and 2) list of anonymized chat posts. |

exportxml(posts)
Export posts to XML.
exportxmpp(posts)

Export posts to XMPP (not yet implemented).
exportchattrack(posts)
Export posts to Chat Track XML file (not yet implemented).
See http://moby.ittc.ku.edu/chattrack for more info on ChatTrack project.
removemsgs(posts, msg_string)
Remove posts with messages that match given string and return copy.
Case and white-space sensitive. Returns a copy of the original list with posts consisting of msg_string removed.

| enumerate_tf(posts) |
| :--- |
| Enumerates posts using the time field. |
| Useful when posts do not contain timestamp info (as posts from Lin Corpus). A one-up |
| serialization, starting at 1, will be inserted into the time field of passed posts. |


| tokenize_posts(posts) |
| :--- |
| Tokenize all posts in session. |
| Tokenizes all posts in a given set of posts and writes tokenized list to post tokenized message |
| attribute. Also calculates freq distributions. |

calc_tfidf(posts)
Calculate TFIDF weights for each token in posts in given session.
Requires that posts have been tokenized (tokenize_posts()).

| make_conn_matrix $($ posts $)$ |
| :--- |
| Create connectivity matrix of all passed posts. |

get_msg_pairs(matrix, threshold)
Get message pairs from connectivity matrix.
Given a connectivity matrix and a threshold, return message pairs that comprise posts
whose connectivity scores exceed the threshold.
construct_thread(pairs, rmi)
Construct message thread given root message index (rmi).
recover_thread(matrix, rmi, threshold)
Return message thread given matrix, root message ID, and threshold.
evaluate_pairs(t_actual, pairs, label=0)
Return an evaluation of message pairs against an actual thread.

| get_results( matrix, thresholds, __actual, label $=0$ ) |
| :--- |
| Get result of actual |


| compare $\left(t_{-}\right.$actual, $t_{-}$predict $)$ |
| :--- |
| Return results from the comparison of actual message thread with predicted message thread. |


| nick_augment $($ posts $)$ |
| :--- |
| Augment msg tokens with user nickname. |

## time_dist_penalize (matrix)

Calculate a time-distance penalized matrix of message posts.
Given an input connectivity matrix, penalizes weights by time-distance given the following formula:
connectivity $(\mathrm{i}, \mathrm{j})=1 /|\mathrm{i}-\mathrm{j}| *$ weight $(\mathrm{i}, \mathrm{j})$ if i not equal to $\mathrm{j}=0$, otherwise
Returns results as a matrix.
hyper_augment $($ posts, levels $=2$ )
Augment tokenized post with WN hypernyms.
Scans post tokens and for each word found in WN, adds the n-level hypernyms of first word sense found, where n is the number of levels above in the WN hierarchy.

## query_wn(token)

Query WN for existence of word.
Returns "Yes" if word is in WordNet, "No" otherwise. Requires that WN be installed and functional on system.
make_token_graph(posts, aug='aug')
Extract tokens from post and create DOT graph.
Extracts tokens from post msg tokens and builds DOT graph.

### 1.2 Class Post

Store chat post.
Stores chat post with the following attributes:
user the real user name time received time as time tuple (ref time module) time_org the original received time as formatted in post nick nickname of user on post msg the original message msg_token tokenized message as list msg_aug augmented token list freqdist frequency distribution of the post message tokens tfidf tfidf of given token in post

Note: time/time_org fields do not include timezone information. If preservation of timezone is important, it is recommended to convert time to UTC prior to post instantiation.

### 1.2.1 Methods

-_init__(self, time, time_orig, user, nick, msg, msg_token=None, msg_aug=None,
freqdist=None, tfidf $=$ None $)$

### 1.3 Class Session

## object <br> list <br> chat_tools.Session

Store set of class posts.

### 1.3.1 Methods

| __init__(self, posts=None, start=None, end=None, freqdist=None) |
| :--- |
| x.___init__(...) initializes x; see x.__class__-__doc__ for signature |
| Return Value <br> $\quad$ new list <br> Overrides: object.__init_-_ extit(inherited documentation) |


| duration(self, increment='sec') <br> Return duration of chat session. <br> Returns duration of the session if start and end times are available. Returns -1 otherwise. <br> Optional arguments are: <br> sec return time in seconds (default) min return time in minutes hour return time in hours <br> day return time in day <br> getallnicks $($ self $)$ <br> Return all nicknames in session. <br> main() |
| :--- |

## Inherited from list

 __getitem__(), _-getslice__( ), _-gt__(), __hash__(), __iadd_-(), __imul__(), __iter_-_(), __le__(), __len_-( ), __lt__(), __mul__(), __ne_-(), __new__(), _-repr_-(), __reversed__(), __rmul__(), __setitem__(), __setslice_-( ), append (), count (), extend (), index( ), insert(), pop(), remove(), reverse(), sort()

## Inherited from object

__delattr_-(), __reduce_-( $),$ __reduce_ex__( $),$ __setattr_-( $),$ __str_-( $)$
1.3.2 Properties

7

| Name | Description |
| :--- | :--- |
| Inherited from object <br> _-class_-- |  |

## Index

chat_tools (module), 2-8
chat_tools.anonymize (function), 4
chat_tools.calc_tfidf (function), 5
chat_tools.compare (function), 5
chat_tools.construct_thread (function), 5
chat_tools.demo (function), 2
chat_tools.enumerate_tf (function), 4 chat_tools.evaluate_pairs (function), 5 chat_tools.exportchattrack (function), 4 chat_tools.exportxml (function), 4 chat_tools.exportxmpp (function), 4 chat_tools.get_coll_posts (function), 2 chat_tools.get_lin_posts (function), 2 chat_tools.get_msg_pairs (function), 5 chat_tools.get_results (function), 5 chat_tools.get_tactical_posts (function), 3 chat_tools.getalltokens (function), 3 chat_tools.getalltypes (function), 3 chat_tools.getdocvector (function), 3 chat_tools.getnicks (function), 3 chat_tools.hyper_augment (function), 6 chat_tools.loadsession (function), 4 chat_tools.main (function), 2 chat_tools.make_conn_matrix (function), 5 chat_tools.make_token_graph (function), 6 chat_tools.nick_augment (function), 5 chat_tools.Post (class), 6
chat_tools.Post._init_- (method), 6 chat_tools.query_wn (function), 6 chat_tools.recover_thread (function), 5 chat_tools.removemsgs (function), 4 chat_tools.savesession (function), 4 chat_tools.Session (class), 6-8 chat_tools.Session.duration (method), 7
chat_tools.Session.getallnicks (method),
7
chat_tools.Session.main (method), 7 chat_tools.sortnicks_byfreq (function), 3 chat_tools.stopwords_byfreq (function), 3 chat_tools.time_diff (function), 2 chat_tools.time_dist_penalize (function), 5 chat_tools.tokenize_msg (function), 3

## Bibliography

[1] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information Retrieval. Cambridge University Press, 2008.
[2] B. Eovito, "Assessment of joint chat requirements from current usage patterns," Master's thesis, Naval Postgraduate School, Monterey, California, June 2006.
[3] R. Cunningham, O. Amezcua, and L. Duffy, "FY08 Tactical Chat Survey," Navy Space and Naval Warfare Command San Diego, Tech. Rep., 2008.
[4] J. Lin, "Automatic author profiling of online chat logs," Master's thesis, Naval Postgraduate School, Monterey, California, March 2007.
[5] E. N. Forsyth, "Improving automated lexical and discourse analysis of online chat dialog," Master's thesis, Naval Postgraduate School, Monterey, California, September 2007.
[6] A. Stolcke, K. Ries, N. Coccaro, E. Shriberg, R. Bates, D. Jurafsky, P. Taylor, R. Martin, C. V. Ess-Dykema, and M. Meteer, "Dialogue act modeling for automatic tagging and recognition of conversational speech," 2000. [Online]. Available: citeseer.ist.psu.edu/stolcke00dialogue.html
[7] T. Wu, F. M. Khan, T. A. Fisher, L. A. Schuler, and W. M. Pottenger, "Posting act tagging using tranformation-based learning," in Proceedings of the Workshop on Foundations of Data Mining and Discovery, IEEE International Conference on Data Mining, December 2002.
[8] E. Ivanovic, "Dialogue act tagging for instant messaging chat sessions," in ACL, 2005.
[9] M. Zitzen and D. Stein, "Chat and conversation: a case of transmedial stability?" Linguistics, vol. 42, no. 5, pp. 983-1021, 2004.
[10] H. Sacks, E. A. Schegloff, and G. Jefferson, "A simplest systematics for the organization of turn-taking for conversation," Language, vol. 50, no. 4, pp. 696-735, 1974.
[11] P. M. Aoki, M. H. Szymanski, L. D. Plurkowski, J. D. Thornton, A. Woodruff, and W. Yi, "Where's the "party" in "multi-party"?: analyzing the structure of small-group sociable talk," in CSCW '06: Proceedings of the 2006 20th anniversary conference on Computer supported cooperative work. New York, NY, USA: ACM, 2006, pp. 393-402.
[12] M. M. Egbert, "Schisming: The transformation from a single conversation to multiple conversations," Ph.D. dissertation, Univ. of California, Los Angeles, CA, 1993.
[13] V. H. Tuulos and H. Tirri, "Combining topic models and social networks for chat data mining," in WI '04: Proceedings of the 2004 IEEE/WIC/ACM International Conference on Web Intelligence. Washington, DC, USA: IEEE Computer Society, 2004, pp. 206-213.
[14] J. O'Neill and D. Martin, "Text chat in action," in GROUP '03: Proceedings of the 2003 International ACM SIGGROUP conference on Supporting group work. New York, NY, USA: ACM, 2003, pp. 40-49.
[15] S. Herring, "Interactional coherence in CMC," System Sciences, 1999. HICSS-32. Proceedings of the 32nd Annual Hawaii International Conference on System Sciences, vol. Track2, 1999.
[16] M. Elsner and E. Charniak, "You talking to me? A corpus and algorithm for conversation disentanglement," in Proceedings of ACL-08: HLT. Columbus, Ohio: Association for Computational Linguistics, June 2008, pp. 834-842. [Online]. Available: http://www.aclweb.org/anthology/P/P08/P08-1095
[17] K. Nigam, J. Lafferty, and A. McCallum, "Using maximum entropy for text classification," IJCAI-99 Workshop on Machine Learning for Information Filtering, pp. 61-67, 1999.
[18] M. Elsner. (2008, June) You talking to me? A corpus and algorithm for conversation disentanglement. [Online]. Available: http://www.cs.brown.edu/~melsner/acl-08-slides. pdf
[19] G. Salton, G. Salton, A. Wong, C. S. Yang, and C. S. Yang, "A vector space model for automatic indexing," Commun. ACM, vol. 18, no. 11, pp. 613-620, 1975.
[20] D. Jurafsky and J. H. Martin, Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2000.
[21] T. Hofmann, "Probabilistic latent semantic analysis," in Proc. of Uncertainty in Artificial Intelligence, UAI'99, Stockholm, 1999. [Online]. Available: citeseer.ist.psu.edu/ hofmann99probabilistic.html
[22] D. Blei, A. Ng, and M. Jordan, "Latent Dirichlet Allocation," Journal of Machine Learning Research 3, 2003. [Online]. Available: http://www.cs.princeton.edu/~blei/ papers/BleiNgJordan2003.pdf\#search=\%22Latent\%20Dirichlet\%20Allocation\%22
[23] T. S. Ferguson, "A Bayesian analysis of some nonparametric problems," Annals of Statistics, vol. 1, no. 2, pp. 209-230, 1973.
[24] D. M. Blei, T. L. Griffiths, M. Jordan, and J. B. Tenenbaum, "Hierarchical topic models and the nested Chinese restaurant process," Neural Information Processing Systems (NIPS) 16, 2003.
[25] Y. Wang, M. Yoshi, W. Cohen, and C. Rosé, "Recovering implicit thread structure in newsgroup style conversations," in Proceedings of the 2nd International Conference on Weblogs and Social Media, 2008. [Online]. Available: http://www.cs.cmu.edu/~yichiaw/
[26] M. Steyvers and T. Griffiths, Latent Semantic Analysis: A Road to Meaning, 2006, ch. Probabilistic Topic Models.
[27] Netlingo. [Online]. Available: http://netlingo.com/

THIS PAGE INTENTIONALLY LEFT BLANK

## Initial Distribution List

1. Defense Technical Information Center

Ft. Belvoir, Virginia
2. Dudley Knox Library

Naval Postgraduate School
Monterey, California
3. LorRaine T. Duffy, Ph.D.

SSC San Diego Code 246207
San Diego, California
4. Thuy Nguyen

Naval Postgraduate School
Monterey, California


[^0]:    ${ }^{1}$ Some chat clients provide a convention for targeting posts toward a particular user. For example, to target a post to a particular user, that user's nickname is prepended with an "@" symbol. The nickname is then hyperlinked to that user's profile or message stream.

[^1]:    ${ }^{1}$ Available at http://faculty.nps.edu/cmartell/NPSChat.htm
    ${ }^{2}$ http://www.pidgin.im/

[^2]:    ${ }^{3}$ Available at http://www.cs.brown.edu/~melsner/

[^3]:    ${ }^{4}$ Available from the Cognitive Science Laboratory at Princeton University: http://wordnet. princeton.edu/

[^4]:    ${ }^{5}$ Available from website of Hal Daumé III at the University of Utah School of Computing: http://www. cs.utah.edu/~hal/megam/index.html

[^5]:    ${ }^{6}$ Details on the University of Penn. Dept. of Computer Science website at http://www.cis.upenn. edu/~treebank/
    ${ }^{7}$ Available from Apple, Inc., Developer Connection website at http://developer.apple.com/ iphone/library/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/ iPhoneOSProgrammingGuide.pdf
    ${ }^{8}$ Freely available textbook issued under the Creative Commons license. Available at http://www. lightandmatter.com/area1book1.html
    ${ }^{9}$ Freely available at http://www. diveintopython.org/

[^6]:    ${ }^{10}$ The Topic Modeling Toolbox, available at the Univ. of California Irvine Cognitive Sciences Department website: http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm, is designed for use with Matlab, but the LDA classification module is fully compatible with Octave.

[^7]:    ${ }^{1}$ http://nltk.sourceforge.net
    ${ }^{2}$ http://wordnet.princeton.edu/
    ${ }^{3}$ http://faculty.nps.edu/cmartell/NPSChat.htm

[^8]:    ${ }^{1}$ mailto:phadams@nps.edu
    ${ }^{2}$ http://www.nps.edu

