The Muc7\textsubscript{T} Corpus

Katrin Tomanek and Udo Hahn
Jena University Language & Information Engineering (JULIE) Lab
Friedrich-Schiller-Universität Jena, Germany
\{katrin.tomanek|udo.hahn\}@uni-jena.de

1 Introduction

This document gives a short description of the creation of the Muc7\textsubscript{T} corpus, its package structure, and the underlying data format. Finally, two use cases of Muc7\textsubscript{T} are briefly described.

2 Creation of Muc7\textsubscript{T}

Muc7\textsubscript{T} is an extension of the Muc7 corpus (Linguistic Data Consortium, 2001), where we couple common named entity annotation metadata with a time stamp which indicates the time measured for the linguistic decision making process.\footnote{These time stamps should not be confused with the annotation of temporal expressions (e.g., Timex in Muc7).} Therefore, we ran a re-annotation initiative which targeted the named entity annotations (Enamex) of the English part of the Muc7 corpus, viz. PERSONS, LOCATIONS, and ORGANIZATIONS. The annotation was done by two advanced students of linguistics with good English language skills. For consistency reasons, the original guidelines of the Muc7 named entity task were used.

2.1 Data

The original Muc7 corpus consists of three distinct document sets for the named entity task (TRAIN, TEST, and DRY RUN). We used the TEST set to train the annotators and to develop the annotation design. The Muc7\textsubscript{T} corpus consists of the articles from the TRAIN set which comprises 100 articles reporting on airplane crashes. We had to split lengthy documents (27 out of the 100) into halves so that they fitted in the screen of the annotation GUI without the need for scrolling.\footnote{We aimed at avoiding scrolling in order to keep the “mechanical” overhead of the actual annotation procedure as low as possible so that the annotation times would reflect basically the cognitive processes, only.} Still, we had to exclude the following

1These time stamps should not be confused with the annotation of temporal expressions (e.g., Timex in Muc7).

2We aimed at avoiding scrolling in order to keep the “mechanical” overhead of the actual annotation procedure as low as possible so that the annotation times would reflect basically the cognitive processes, only.
Figure 1: Screenshot of the annotation GUI showing an annotation example where the complex noun phrase “GTE Airfone services” is highlighted for annotation.

two documents due to extreme over-length which would have required overly many splits: nyt960718.0792 and nyt960721.0140.

2.2 Annotation Principles

In the Muc7\(_T\) corpus, annotation time measurements are recorded for two syntactically different annotation units: (a) complete sentences and (b) complex noun phrases (CNP)s which are top-level noun phrases in the constituency structure of the respective sentence. The annotation task was defined such as to assign an entity type label to each token of an annotation unit. Please refer to Tomanek and Hahn (2010) for a discussion why CNPs were used and how these were derived automatically.

For precise time measurements, single annotation examples were shown to the annotators, one at a time. An annotation example consists of the chosen Muc7 document with one annotation unit (sentence or CNP) selected and highlighted (yet, without annotation). Only the highlighted part of the document could be annotated and the annotators were asked to read only as much of the visible context surrounding the annotation unit as necessary to make a proper annotation decision. Figure 1 shows a screenshot of the annotation GUI.

Annotation was performed in blocks of 500 CNP-level or 100 sentence-level annotation examples. In the Muc7\(_T\) corpus, annotation time meta data of both annotators is available on the CNP- and the sentence-level.
Further details on the creation and annotations principles of Muc7T can be found in Tomanek and Hahn (2010). In this paper, you will also find an analysis of the inter-annotator agreement (Cohen’s Kappa is $\kappa \approx 0.95$ for both annotators) as well as other corpus statistics.

3 Package Structure

Figure 2 shows the directory structure of the Muc7T package. Some very short descriptions and remarks on each subdirectory:

- **data**
 This directory contains the actual Muc7T data. You will find the data for annotator A and B, each separately. For both annotators, there is a version of Muc7T with CNP-level and with sentence-level annotations. Section 4 discusses the used XML format in more detail.

- **docs**
 Contains this documentation as well as publications describing applications of Muc7T. There is also a small JavaDoc for the Java tools (see below).

- **dtd**
 You will find the Document Type Definition (DTD) for the data here.

- **tools**
 There is a small Java API which allows to read the Muc7T XML data so that each annotation example is represented by a Java object. Besides the source code, you will also find a jar package. The code has been tested with Java 1.5 and Java 1.6.

4 Data Format

The Muc7T corpus is stored in XML format. See Figure 3 for the respective DTD. There is an element *anno_example* for each annotation example. It has the original Muc7 document as text context. The Muc7 document was tokenized using the Stanford Tokenizer\(^3\) with white spaces marking token boundaries. The following attributes are used for the element *anno_example*:

- **anno_time**: The time it took to annotate the annotation unit of this annotation example (time in milliseconds).

\(^3\)The tokenizer is part of the Stanford Parser package which can be obtained from http://nlp.stanford.edu/software/lex-parser.shtml.
Figure 2: Directory structure of the Muc7T package.

- **anno_unit_tokens**: All tokens of the annotation unit.
- **anno_unit_offset**: Offsets for the tokens of the annotation unit relative to all tokens in the annotation example.
- **anno_unit_labels**: Labels for the tokens of the annotation unit (these labels are taken from Muc7).
- **doc_id**: ID of the document of the annotation example.
- **sent_id**: ID of the sentence of the annotation example.
- **anno_unit_id**: ID of the unit of the annotation example. All three ids (doc_id, sent_id, and anno_unit_id) jointly yield a unique identifier of this annotation example. Moreover, they allow to regroup or reorder the annotation examples, e.g., by document or sentence. They can also be used as links between the CNP-level and the document-level version of Muc7T.
- **muc7.org.filename**: The name of the original Muc7 document from which this annotation example is taken.

Figure 4 shows such an annotation example in XML format. It stems from the original Muc7 file nyt960721.0261. It took about 4.5 seconds to annotate. The annotation unit (a CNP, here) consists of the 4th to 11th token (we start counting from 0) of the annotation example text: these tokens are “the crash of Pan Am 103 over Lockerbie” and “Pan Am” is marked as an organization and “Lockerbie” as a location. This annotation unit
Figure 3: Document Type Definition (DTD) of the XML format.

was taken from the 68th Muc7 document, is in the 1st sentence of this document, and therein is the 1st CNP. The next CNP-level annotation example of this example would be for the annotation unit “Scotland” having anno_unit_id="2" (doc_id and sent_id would stay the same).

5 Use Cases of Muc7T

We created Muc7T focusing on two main purposes both in the context of resource- and cost-conscious annotation strategies. On the one hand, it can be used for evaluations of selective sampling strategies, such as Active Learning (Cohn et al., 1996) – instead of empirically questionable assumptions on the necessary annotation efforts (e.g., the assumption of the uniformity of annotation costs over the number of linguistic units, typically tokens, to be annotated), Muc7T now allows to run repeatable simulations on selective sampling strategies where the annotation effort can be expressed by the actual time needed to annotate a selected item. This use case is described in more detail in Tomanek and Hahn (2010) and Tomanek (2010).

Another use case for Muc7T is the creation of predictive models for annotation costs. Such models are needed when selective sampling strategies, such as Active Learning, should not only select on the basis of estimated informativeness or utility of an example (to be maximized), but also taking into account the estimated time this example would require for annotation (to be minimized). As annotation costs are not known prior to annotation, their quantity has to be estimated. In Tomanek et al. (2010), we describe an empirical study where the annotators’ reading behavior was observed with an eye-tracking device while a corpus was annotated. With the insights on factors influencing annotation time which we gathered through this study, we were able to induce such a much needed predictive model of annotation costs.
MORICHES, N.Y. After the crash of Pan Am 103 over Lockerbie, Scotland, in December 1988, it took investigators seven days to determine that the cause was a bomb. But after a Boeing 737 crashed on approach to Pittsburgh in September 1994 which was

[...]