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ABSTRACT

We describe the design of IBM’s Attila speech recognition
toolkit. We show how the combination of a highly modu-
lar and efficient library of low-level C++ classes with simple
interfaces, an interconnection layer implemented in a mod-
ern scripting language (Python), and a standardized collec-
tion of scripts for system-building produce a flexible and scal-
able toolkit that is useful both for basic research and for con-
struction of large transcription systems for competitive evalu-
ations.
Index Terms: speech recognition

1. INTRODUCTION

Our goals for the Attila toolkit were driven by our previous
experience using other toolkits for both basic research and
construction of large evaluation systems. A key to success-
ful evaluation systems, for example in the DARPA EARS
and GALE programs, is completing a large number of experi-
ments in a short amount of time: efficient implementation and
scalability to large compute clusters are crucial. A key to suc-
cess in basic research is rapidly prototyping new ideas without
needing to write a lot of low-level code: a researcher should
be able to focus on the algorithm without needing to satisfy
complex interfaces. In summary, the design of the toolkit is
based on the following wish list:

Flexibility A rich interface that supports fast prototyping.

Efficiency Minimal overhead for fast experiment turn-
around.

Simplicity A focus on the algorithm, not on the interface
code.

Maintainability A small, low-complexity code base.

The last goal is motivated by our observation that some auto-
matic speech recognition toolkits, including a previous inter-
nal toolkit, comprise hundreds of thousands of lines of code,
leading new users to duplicate preexisting functions simply
because they could not comprehend the existing code.

2. DESIGN

To accomplish these goals, the toolkit makes a clear distinc-
tion between core algorithms and glue code by combining the
advantages of a high-level scripting language with the effi-
ciency of C++ [1]. Traditionally, C++ modules are assembled
into executables that are controlled via a command-line in-
terface, configuration files, or both, and the executables are
managed from the scripting language. An example of this ap-
proach is HTK. This approach is cumbersome because it en-
tails the parsing of many parameters and provides only very
coarse-grained access to the underlying C++ classes. We opt
for a different approach, in which the target scripting lan-
guage, Python, is extended with customized C++ classes. A
key enabler isSWIG [2], a tool that automatically generates
interface code from the header files of a C++ library. We have
designed the C++ classes in Attila such that most class mem-
bers are public; thus, nearly all C++ data structures are ex-
posed within Python.

Attila consists of three layers.

1. The C++ Library , which contains all the low-level
classes needed to build a modern, large-vocabulary
acoustic model, as well as two different decoders.

2. The Python Library , which contains modules that
connect objects from the C++ library together into
higher-level building blocks used to train and test
speech recognition systems.

3. The Attila Training Recipe (ATR) : a collection of
standard scripts to build state-of-the-art large vocabu-
lary speech recognition systems. These scripts allow
even inexperienced users to build new systems from
scratch, starting with a flat-start procedure and cul-
minating in discriminatively trained, speaker-adaptive
models.

Figure 1 illustrates the structure of the toolkit. The C++
classes are represented by proxy Python classes that are gen-
erated automatically usingSWIG. The modules in the Python
library provide the glue to create higher-level functions used
in scripts for training and decoding. The main benefit of
this design is that it offers maximal flexibility without requir-
ing the writing of interface code and without sacrificing effi-
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Fig. 1. Structure of the Attila toolkit.

ciency. In the next paragraphs we highlight some of the de-
sign choices we made that we found particularly useful.

2.1. Separation of Models, Accumulators, and Estimators

As shown in Figure 1, we have separate objects for models
(e.g., Gaussian mixture models), accumulators (to hold suffi-
cient statistics), and estimators (e.g., maximum likelihood and
maximum mutual information). This allows us to reuse com-
ponents and combine them in new ways. For example, the ac-
cumulator routines can be used for both maximum likelihood
(ML) and maximum mutual information (MMI) estimation.
While the ML estimator uses only one accumulator, the MMI
estimators will update the models using two accumulators,
one for the numerator statistics and one for the denominator
statistics.

2.2. Abstraction of Alignments

Our alignment object is simply a container holding a set of
hidden Markov model (HMM) state posterior probabilities
for each frame. An alignment can be populated using several
different methods: Viterbi, Baum-Welch, modified forward-
backward routines over lattices for minimum phone error
(MPE) or boosted MMI training, uniform segmentation for
flat-start training, or conversion of manual labels as in the
TIMIT corpus. Accumulator objects accumulate sufficient
statistics only through an alignment object. This makes it
easy to add new models to the toolkit, because only a method
to accumulate sufficient statistics given an alignment and a
method to update the model parameters from the statistics are
required. Likewise, it is easy to add new alignment methods,
because the designer only needs to worry about properly pop-
ulating the alignment object.

2.3. Acoustic Scorer Interface

Because we are interested in working with a variety of acous-
tic models, including Gaussian mixture models, neural net-
works, and exponential models, we use an abstract interface
for acoustic scoring that permits us to use any acoustic model
with any decoder or alignment method. The interface consists
of only a few functions:

class Scorer:
virtual int get_model_count()=0;
virtual int get_frame_count()=0;
virtual int set_frame(int frameX)=0;
virtual float get_score(int modelX)=0;

get model count returns the number of models in
a model container (e.g., the number of HMM states).
get frame count returns the number of available frames
in the current utterance.set frame selects a frame for
scoring.get score returns the score (scaled negative log-
likelihood) for themodelX-th model for the current frame.

2.4. Language Model Interface

Because the toolkit provides two different decoders, a static
FSM decoder and a dynamic network decoder, and several
different types of language model, it was necessary to use an
abstract language model interface to maximize interoperabil-
ity.

class LM:
virtual STATE start (WORD wordX);
virtual STATE extend(STATE state, WORD wordX)=0;
virtual SCORE score (STATE state, WORD wordX)=0;
virtual void score (STATE state, SCORE *scoreptr)=0;

The language model state is an abstraction of the n-
gram history that provides a unified view of the language
model. The decoder accesses the language model only
throughLM::STATE instances. At the start of the utter-
ance, the decoder generates an initial language model state
by calling start(wordX). The state is updated by call-
ing extend(state,wordX) when transitioning to a new
word. Decoding with n-gram models or finite state gram-
mars can be easily expressed with this interface, as can lattice
rescoring. The second variant of thescore method retrieves
the language model scores for all words in the vocabulary for
a givenstate. This function is needed for fast language
model access when computing lookahead scores for the dy-
namic network decoder.

2.5. Front End Interface

We implement dependency resolution for speakers and utter-
ances in the Python layer, within a base class for all front end
classes, and allow front end module instances to depend on
the outputs of multiple other instances. We also use a very
simple interface for front end modules: all modules produce
matrices of floating-point numbers, and, with the exception
of the module responsible for audio input, all modules accept
matrices of floats as input. These two features have impor-
tant consequences. First, authors of the front end C++ classes



can focus solely on the algorithmic details, and do not need to
worry about how their code will interact with other classes:
as long as they can accept and produce matrices of floats,
the Python library will handle the rest. Second, we can real-
ize front end signal processing algorithms as directed acyclic
graphs of interacting instances, allowing for the production,
for example, of perceptual linear prediction (PLP) and pitch
features in a Mandarin speech recognition system.

3. CAPABILITIES

3.1. Front End

Available front end modules include audio input from a file,
audio input from a socket, audio input from a sound card,
downsampling, power spectrum, Mel binning with support
for vocal tract length normalization (VTLN), Gaussianiza-
tion, PLP coefficients, Mel-frequency cepstral (MFCC) co-
efficients, mean and variance normalization, splicing of suc-
cessive frames into supervectors, application of a linear trans-
form or projection such as linear discriminant analysis (LDA),
feature-space maximum likelihood linear regression (FM-
LLR), fusion of parallel feature streams, pitch estimation, and
feature-space discriminative transforms.

3.2. Hidden Markov Models and Context Modifiers

We use a three layer structure for hidden Markov models:
(1) word graph, (2) phone graph, and (3) state graph. The
word graph is usually constructed using a “sausage” struc-
ture to represent pronunciation variants and optional words.
During training, a linear word sequence is constructed from
the reference, and then it is extended to a sausage by adding
alternative pronunciations and marking some tokens (e.g.,si-
lence) as optional. The phone graph is generated by apply-
ing the pronunciation lexicon to the word graph. In a similar
fashion, the state graph is generated from the phone graph by
applying a user defined HMM topology. Users can manipu-
late the HMM directly at the scripting level, adding nodes and
transitions, setting transition costs, and so on.

The HMM object also handles the phonetic context
needed to build decision trees by making the phone graph
context dependent. We use a token-passing scheme to induce
context in the graph structure. A forward pass propagates left
context, while a backward pass adds the right context. At
each node, a vector representing the context is updated with
the current phone and shifted to respect constraints on the ex-
tent of the context. A new copy of the node is created for each
unique context. This algorithm is surprisingly simple, andal-
lows the use of long-range within-word and across-word con-
texts. The context in the HMM phone graph encodes both
phone identity and position within the word.

To make the HMM context handling even more flexible,
we use an abstract interface to defineContextModifier
objects that transform the HMM-induced context by adding

additional constraints. AContextModifier is used by
attaching it to a decision tree or decoding graph constructor.
We have used this mechanism to limit the extent of cross-
word context for small-footprint applications, and to combine
acoustic models with different context configurations using
tree arrays.

3.3. Decision Trees and Tree Arrays

To build decision trees, we model untied, fully context-
expanded HMM states using single diagonal-covariance
Gaussians, and construct the decision trees in a greedy fash-
ion, selecting the question that gives the best gain in likeli-
hood. For large contexts and large training corpora, we must
handle hundreds of millions of untied HMM states. For ex-
ample, a vowelized model for our 2009 GALE Arabic sys-
tem had about78 million untied states. We use a memory
manager to reduce fragmentation caused by millions of small
objects, and we hash the HMM state context to optimize ac-
cess to the untied states. The clustering procedure can ask
questions about the identity of the center phone, which letsus
share models between different phones. This is useful when
the phone set is not well designed or when there is a very
limited amount of training data.

Another feature in our toolkit is tree arrays: a mechanism
for combining multiple acoustic models with different deci-
sion trees into a single acoustic model. The decision trees
may have entirely different question sets and, with the use of
context modifiers, different context sizes or phone sets. A tree
array is basically a hash table mapping from tuples of states
from the different decision trees to virtual model indices,and
is generated during the construction of a decoding graph. The
virtual model indices are stored in the decoding graph. At run
time, the acoustic scorer translates this virtual model back into
a set of physical models and combines the acoustic scores of
the underlying models using a weighted sum. One applica-
tion of tree arrays is audio-visual speech recognition. With
tree arrays, the acoustic model can specialize for phonemes,
while the visual model specializes for visemes, reducing the
error rate by3% on an audio-visual speech recognition task
[3]. A second application uses tree arrays for system com-
bination: an alternative to ROVER or cross-adaptation that
requires only a single decoding pass.

3.4. Gaussian Mixture Models

Gaussian mixture models are split into two components: one
container for mean and precision matrices, and a second for
mixture weights. This allows us to build semi-continuous
models, also calledGenone models [4]. A semi-continuous
model gave us an0.5% improvement on top of our very best
fully-continuous system for the 2009 Arabic GALE evalua-
tion. The toolkit supports a variety of covariance structures:
radial, diagonal, and full.



3.5. Neural Networks

The toolkit provides modules implementing feedforward,
multilayer perceptrons, and both an acoustic scorer interface
and a front end interface for neural networks. Thus, networks
can be used both for acoustic modeling and for feature extrac-
tion. The core modules implement basic building blocks such
as convolutional weights; logistic, hyperbolic tangent, and
softmax nonlinearities; and squared error and cross-entropy
loss functions. All modules can operate on and produce ei-
ther matrices or 3-dimensional tensors. As in the front end,
we use Python wrapper classes to manage the connection of
these basic building blocks into networks, and we separate
models, accumulators, and estimators into separate classes.
Networks are trained using error backpropagation. Because
the training routines are implemented as Python scripts, itis
simple to perform either fully on-line or mini-batch updates
of the network parameters. It is also possible to train networks
using sequence-discriminative criteria such as boosted MMI
or MPE [5]: a capability that was easily added because of the
toolkit’s modular structure and standardized interfaces.

3.6. Adaptation

Sufficient statistics for adaptation are accumulated basedon
the same alignment object used in acoustic model training.
The toolkit supports three forms of feature-space adaptation:

1. Vocal tract length normalization (VTLN [6]). For the
details of our VTLN implementation, see [7].

2. Feature-space maximum likelihood linear regression
(FMLLR, also known as constrained MLLR [8]).

3. Gaussianization, a form of histogram normalization im-
plemented using a table lookup of inverse Gaussian cu-
mulative density function values [9].

Model-space adaptation is performed with multiple MLLR
transforms [10] using a regression tree to generate transforms
for different sets of mixture components. We also support
mean and diagonal variance transform estimation under dis-
criminative objective functions such as boosted MMI.

3.7. Discriminative Training

The toolkit supports a variety of techniques for discrimina-
tive training, operating in both feature and model space and
using several criteria: maximum mutual information (MMI),
minimum phone error [11] and boosted MMI [12]. The dif-
ferent objective functions are implemented using different
forward-backward routines, but they all have the same inter-
face: the alignment object. For model space training, poste-
riors in the alignment objects multiply the normalized com-
ponent likelihoods in the accumulation of model sufficient
statistics. The model update uses smoothing to the previ-
ous iteration’s model and cancellation of common statistics
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between the numerator and denominator paths, as explained
in [12]. For feature space transformation estimation (e.g.,
fMPE [13]), the posteriors in the alignment objects are used
to compute the gradient of the objective function with respect
to the transformed features. This gradient is multiplied bythe
gradient of the transformed features with respect to eitherthe
main or the context transform to perform the model update.
Competing paths (the denominator term) are encoded in word
lattices generated by either of the decoders described below.
We use a weak language model (unigram), and the language
model states during decoding are given by a hashing of the
entire word sequence up to the current frame [14]. We have
observed gains from discriminative training of 10–30% rela-
tive over maximum-likelihood training, depending on the task
and models.

3.8. Static Network Decoder

The static decoding graph can be constructed either through
incremental expansion of the context decision tree [15], or
through an incremental composition of the component finite
state machines (FSMs) [16]. The FSM decoder, described
in [14, 17], can produce a variety of outputs: 1-best hypothe-
ses, word-level and HMM state-level lattices, and confusion
networks. The decoder is very efficient, running in real time
or faster without any significant loss in accuracy.

3.9. Dynamic Network Decoder

The dynamic network decoder [17] is a one-pass Viterbi de-
coder capable of handling large across-word contexts and
large language model histories. The search network is based
on a word loop and is fully minimized, including across-word
context expansion. Word labels are shifted to allow for early
path recombination. The language model lookahead uses the
full language model history, and subtree dominance is ex-
ploited implicitly by a token pruning step. The Decoder can
handle several types of the language model, including a new
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class based Maximum Entropy model described in [18]. The
language model interface described earlier makes it easy to
plug in new types of language models in the decoder without
any need to modify the decoder itself.

A comparison of the decoder on an English Broadcast
News task with a 90k vocabulary are shown in the figures
2 (small n-gram LM) and 3 (very large n-gram LM). Both de-
coders use the same acoustic and language models. The dy-
namic decoder uses the large n-gram LM directly, while the
static decoder produces lattices first a small LM, followed by
rescoring with the large LM. A more detailed discussion can
be found in [17]. Decoding speed is measured as RTF (real
time factor): processing time divided by segment duration.
All experiments were run on a Intel Xeon 3.6GHz processor.

4. ATTILA TRAINING RECIPE

The Attila Training Recipe (ATR) is a set of standard scripts
to build acoustic models. It begins with a flat-start procedure
using an initial, uniform alignment of the HMM states and
random sampling of pronunciations. This approach works
well even for systems with many pronunciations, such as
vowelized Arabic [19]. The uniform alignments initialize
context-independent (CI) models, which are refined using the
Baum-Welch algorithm. The CI models initialize a first set
of context-dependent (CD) models, which are rebuilt several
times, with the latter steps including speaker adaptation and
discriminative training. Table 1 shows the performance of the
recipe on a 50-hour English Broadcast News task. The ATR
is the basis of all our evaluation systems, including English,
Arabic and Mandarin broadcast, English and Spanish parlia-
mentary [20], and conversational [7] tasks. Table 2 shows re-
sults for ASR systems that were trained on hundreds to thou-
sands of hours using the toolkit and fielded in speech recog-
nition evaluations [19, 21, 18]. As seen in recent GALE eval-
uations, the systems have excellent performance.

While the recipe was designed for large vocabulary tasks,

− Alignments with MLLR adapted models
− LDA on stacked features

− GMM training with embedded STC
− Decision Tree for Quinphones

CD Models

− static features
− GMM training for CI models

Flatstart

− Random Initialization

− Alignments with MLLR adapted models
− Voicing Model
− LDA in VTL space

− GMM training with embedded STC in VTL space
− Decision Tree for Quinphones in VTL space

VTL Models

− FMLLR for training speakers
− Alignments with FMLLR and MLLR adapted models
− Decision Tree in FMLLR space
− GMM training in FMLLR space

FMLLR−SAT Models

Discriminative Training
− Lattice generation
− Transform estimation
− Model estimation

Fig. 4. Training Recipe. In each system building step, new
alignments will be written using MLLR adapted models from
the previous step. The estimation of a global semi-tied co-
variance (STC) is interleaved with the mixing-up procedure
for the Gaussian mixture models (GMMs).

it also works very well on small tasks such as TIMIT, estab-
lishing a new baseline [22] for this task.

5. CONCLUSION

The combination of a carefully engineered library of C++ rou-
tines implementing core algorithms with a high-level script-
ing language is a good design for a speech recognition
toolkit. While the toolkit has many modules including two
full LVCSR decoders, the codebase itself is very small. The
entire toolkit has only about30, 000 lines of C++ code and
about5, 000 lines of Python code. The structure of the toolkit
makes it easy to extend it, to add new training algorithms or
incorporate new front-ends or other components.

The toolkit is very efficient and scalable, allowing us to
build large transcription systems for competitive evaluations
using thousands of hours of training data. At the same time,
the toolkit is flexible and easy to use, making it a good en-



Step WER
inital CD models 34.1%
retrained CD models 31.6%
retrained CD models 31.4%
VTLN models 25.6%
FMLLR-SAT models 23.1%
fMMI models 18.9%
fMMI+bMMI models 18.0%

Table 1. Performance of steps in the Attila Training Recipe

Task Test Performance
Arabic BN EVAL’09 7.2% WER
Chinese BN EVAL’08 9.1% CER
English BN RT’04 12.3% WER

Table 2. Performance of evaluation systems trained on hun-
dreds to thousands of hours of data.

vironment for basic research. For example, the toolkit has
already been used in ways that we had not originally envi-
sioned, such as training continuous space language models.
Feedback from external academic partners who use the toolkit
has also been very positive.

The toolkit is freely available to universities and
government-related institutions and is distributed as binaries,
header files, the Python interconnection layer and the ATR
system building scripts. Please contact the authors for details.
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