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Abstract—Much is known about the design of automated sys-
tems to search broadcast news, but it has only recently become
possible to apply similar techniques to large collections of sponta-
neous speech. This paper presents initial results from experiments
with speech recognition, topic segmentation, topic categorization,
and named entity detection using a large collection of recorded
oral histories. The work leverages a massive manual annotation
effort on 10 000 h of spontaneous speech to evaluate the degree
to which automatic speech recognition (ASR)-based segmentation
and categorization techniques can be adapted to approximate de-
cisions made by human annotators. ASR word error rates near
40% were achieved for both English and Czech for heavily ac-
cented, emotional and elderly spontaneous speech based on 65–84 h
of transcribed speech. Topical segmentation based on shifts in the
recognized English vocabulary resulted in 80% agreement with
manually annotated boundary positions at a 0.35 false alarm rate.
Categorization was considerably more challenging, with a nearest-
neighbor technique yielding F = 0 3. This is less than half the
value obtained by the same technique on a standard newswire cat-
egorization benchmark, but replication on human-transcribed in-
terviews showed that ASR errors explain little of that difference.
The paper concludes with a description of how these capabilities
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could be used together to search large collections of recorded oral
histories.

Index Terms—Automatic speech recognition (ASR), informa-
tion retrieval, multilingual ASR, oral history, spoken document
retrieval, spontaneous speech.

I. INTRODUCTION

I N A RECENT report, an international digital library
working group called for the creation of systems capable of

providing access to an estimated 100 million hours of culturally
significant spoken word collections [1]. Achieving that bold
vision will require two fundamental advances over the present
state of the art: 1) a robust ability to identify spoken words
and other useful features in many types of collections and
2) development of systems that can leverage those features to
meet the real needs of real searchers. Recent work on searching
collections of broadcast news (BN) indicates that these goals
are now within the reach of our technology (e.g., [2]). There
is, however, still a substantial gap between our vision and
our grasp. In this paper, we focus one key implication of this
broader challenge: the degree to which existing techniques can
be adapted to provide access to spontaneous conversational
speech.

Research on automated transcription of spontaneous conver-
sational speech dates back to the creation of the Switchboard
(SWB) corpus of telephone speech in 1993 [3]. Several tele-
phone speech collections were developed over the next decade,
and carefully tuned automatic speech recognition (ASR) sys-
tems are now able to achieve word error rates (WERs) between
20% and 40%, depending on the difficulty of the collection. In
a series of annual evaluations that started in 1996, researchers
participating in the Spoken Document Retrieval (SDR) track of
the Text Retrieval Conferences (TREC) developed ranked-re-
trieval techniques for subject-based searching in BN collections
that were robust in the presence of WERs in the 20%–40%
range [4]. Similar results were obtained for exact-match event
detection in BN at the Topic Detection and Tracking (TDT)
evaluations. Research for the TDT evaluations also resulted
in development of reliable detection of story boundaries in
undifferentiated streams of BN speech, an important prereq-
uisite to the story-based search techniques evaluated at TREC
and TDT.

The next logical step in this evolutionary development path is
to apply what we have learned from our work with BN to search
large collections of spontaneous conversational speech. Unfor-
tunately, none of the existing collections of telephone speech
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that were created to support ASR research are suitable for this
purpose. In some cases (e.g., SWB), callers were prompted to
discuss a specific subject. In others (e.g., the CallHome series),
speakers conversed with personal acquaintances; in those cases,
substantive discussion of the same topic by multiple speakers
turned out to be rare. We were, however, able to obtain access
to an existing set of recordings that had been collected for an-
other purpose that had exactly the characteristics that we needed
for this research.

The Survivors of the Shoah Visual History Foundation
(VHF), founded to preserve the stories of survivors and wit-
nesses of the Holocaust [5], has created what we believe to be
the largest collection of digitized oral history interviews on a
single topic: almost 52 000 interviews in 32 languages, a total
of 116 000 h of audio and video. About half of the collection
is in English, and about 10 000 h of the English interviews
have been extensively annotated by subject-matter experts with
topic boundaries for approximately 200 000 segments (with
an average duration of 3 min) and multiple topic labels for
each segment. The annotation effort also resulted in careful
transcription of all person names in each segment, tagging of
each segment with the location and year, and the creation of
brief (3-sentence) summaries for each segment. The anno-
tator’s personal (“scratchpad”) notes for each segment, which
include a variable degree of detail, were also retained. Topic
and location labels are keyed to a thesaurus with multiple
inheritance that encodes both part-whole and is-a relationships.
This segment-level description is augmented by three data
items associated with the interview as a whole: a name au-
thority file that resolves references to the same person within a
single interview, a half-page summary of the interview written
by the annotator, and extensive demographic information
provided by the interviewee as responses to a questionnaire.
The annotation effort alone required approximately 150 000 h
(75 person-years); collection and digitization of the interviews
incurred additional expenses that are not included in this
estimate.

This paper describes a series of experiments using the VHF
collection that establish a strong foundation for research on
search techniques for automatically transcribed spontaneous
conversational speech. Section II describes in detail the ap-
proach that we are taking to build recognition systems for
spontaneous speech, presenting results for English and Czech.
Section III then describes three key natural language processing
(NLP) components that use the output of these systems to
achieve three fundamental capabilities that are needed to
support a search process: named entity detection, topic seg-
mentation, and segment categorization. Section IV then draws
on these results, describing ways in which the capabilities
demonstrated in this paper could be integrated to build effective
systems for searching spontaneous conversational speech.

II. AUTOMATIC SPONTANEOUS SPEECH RECOGNITION

A. Goals and Challenges

We have two goals for speech recognition: 1) sufficient
accuracy to support downstream processing such as search,
boundary detection, and content annotation and 2) sufficient

extensibility to support affordable application of similar
techniques to incorporate additional languages or collections.
Although WER is an imperfect measure for this application
(because missing some words causes more problems than
others), several studies with BN have shown little degradation
for term-based techniques over a range of WERs, up to 40%
[6]. Beyond that point, however, techniques based on counting
term occurrences typically degrade rapidly. Our first goal is
therefore to achieve a WER below 40% on as large a fraction of
representative unseen test data as is possible. Our second goal,
affordable extensibility, requires that we accomplish that with
a minimum of condition-specific effort. Because the data that
we are working with contains many languages but only a single
domain of discourse, we have chosen a set of five languages
(English, Czech, Russian, Polish, and Slovak) with which to
explore this question.

In this section, we describe the characteristics of the spon-
taneous speech that we seek to recognize, our approaches to
acoustic modeling and language modeling for English, Czech,
and Russian, and the results we have obtained for English and
Czech.

The VHF collection consists of unconstrained, natural speech
filled with disfluencies, heavy accents, age-related coarticula-
tions, un-cued speaker and language switching, and emotional
speech. As will be described in Section II-B, transcription is
challenging even for skilled annotators. Human transcribers typ-
ically required 8–12 h to transcribe a single hour of an Eng-
lish interview. The difficulties arise from unfamiliar names and
places, multiple languages encountered during a single inter-
view, coarticulations related to age, highly variable speaking
rates, and heavily accented speech. For illustration, we include
here an example of the actual words spoken during one segment:

It wasn’t everybody living in one in one one ghetto you
know was a little like the in this street a was a house ghetto
in this street it had ghetto but people couldn’t people wasn’t
allowed to go out in the streets when they came in the
Nazis came in he wanted they made a Jewish committee
the Jewish committee have to help him take where to live
and took out the furniture from from the from the Jewish
people and so and Jewish committee had eighteen people
with me also I helped the Jewish committee I mean the
reason is they had eighteen people we walked the street
everyday two two people two friends we walked on each
street as people doesn’t go out on the street
If the linguistic phenomena that must be modeled did not

differ across languages, it would suffice to perform an in-depth
study of a single language and then extend the results to the
other languages. However, as described in Section II-C, very dif-
ferent phenomena arise in the three languages we have studied
so far. The conservative approach to ASR is to collect as much
in-domain data as possible to train the best performing system.
However, for many practical applications, this approach is pro-
hibitively expensive. If ASR is to be deployed for these other
collections, the practical problem therefore is not simply “how
much data is needed to train an ASR system?”, but rather “what
is the best systematic approach for inexpensive and fast devel-
opment of systems in a new language?” Thus, our research aims
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to develop ASR systems that are “good enough” for the uses to
which they will be put, and to provide studies of “best practices”
that can be used for future cost-effective ASR development for
use in information retrieval systems.

Certain ASR problems, such as those that arise from elderly,
spontaneous, and emotional speech, are common throughout
the corpus. However, some other problems that we have
observed are language-specific. For instance, the English
language interviews tend to be highly accented because the
majority were conducted with people who learned English
as a second language. In contrast, the Russian speakers in
the collection are predominantly native speakers. However,
this does not mean that the Russian language interviews are
any more uniform than the English interviews. There are
regional effects on the speech collected within Russia, and
most Russian interviews were conducted outside Russia, where
the speakers were influenced by the languages of their adopted
countries. Of the approximately 7000 Russian interviews in
the collections, nearly half (3500) were taken in the Ukraine,
1500 in Israel, 900 in the United States, and only about 700
in Russia itself. As a practical problem in ASR, it may be
adequate to model these Russian and English speakers using
similar modeling techniques; however, the underlying causes
of the variability—nonnative speech in English and regional or
dialectal influences in Russian—are quite different.

There are also spontaneous speech effects that are entirely
language-specific. Czech is spoken by a relatively small number
of speakers within a relatively small geographic area, and it
is therefore not surprising that the Czech language interviews
are not particularly accented. However, spontaneously spoken
Czech contains words and usages not found either in standard
written or in formal spoken Czech. The VHF collection, in
particular, is rich in these spontaneous forms. Examples are
given in Table I, showing the differences between the colloquial
usage that appears in our transcriptions and the formal versions
that would appear if the same sentiment were to appear in news
text or broadcast transcriptions. Many of these forms can be
analyzed morphologically; however, usage is variable. As a
result, automatically mapping formal text to its spontaneous
form is problematic, because users are not consistent in their
choice of spontaneous form. The best source of information on
spontaneous usage is transcribed speech itself, which leads to
a shortage of data for the construction of statistical language
models.

Given the intended role of ASR to support information ac-
cess, we are particularly interested in named entity recognition
[7], [8] especially the recognition of personal names and place
names which are both important search criteria (see Section IV).
This is a difficult problem, since these names are often not in the
ASR lexicon. Moreover, names come in many variations (He-
brew names, Yiddish names, diminutives, first names only, etc.).
The VHF collection offers an opportunity to study this problem
through its large database of personal identities (approximately
2.5 million names) that is populated with information taken
from survey forms filled out by the subjects [known as pre-in-
terview Questionnaires (PIQs)], additional names assigned by
catalogers, and a large list of place names (over 20 000 loca-

TABLE I
FORMAL CZECH AND COLLOQUIAL VARIATIONS

tions). One important challenge in this work is that many key
search terms will be found only among the infrequently occur-
ring words and phrases, and rare terms are inevitably modeled
less well than more common ones. Strategies to develop an op-
timal lexicon are addressed in Section II-D.

B. Data Preparation

Approximately 25 000 of the collected interviews are in
English, 7000 are in Russian, and 575 are in Czech. The
average duration of an English interview is 2.5 h, the average
length of a Czech interview is 1.9 h, and the average length of
a Russian interview is 2 h. The interviews were recorded under
a wide variety of conditions ranging from quiet to noisy (e.g.,
airplane overflights, wind noise, background conversations,
and highway noise). Original interviews were recorded on Sony
Beta SP tapes, then digitized into a 3 MB/s MPEG-1 stream
with 128 kb/s (44 kHz) stereo audio.

The average speaking rate of the English interviewees is
146 words/min, with a dynamic range of 100–200 words/min.
For comparison, the average speaking rate in the SWB corpus
is 100 words/min [3]. The relatively high speaking rate in the
English part of the VHF collection is not constant throughout
the corpus, however. The average speaking rate in Czech is
113 words/min, with individual utterances ranging from 64 to
173 words/min; and the average speaking rate in Russian is
123 words/min; clearly speaking rate is highly variable.

In order to maximize the number of speakers in our training
data, we chose to transcribe 15-min segments from a large
number of interviews. For English, this 15-min passage was
selected randomly from within an interview. For Czech and
Russian, it always started 30 min into the interview, so as to
skip the biographical material that was commonly discussed at
the beginning of an interview.

The English corpus was generated using 15-min segments of
an interview from 800 randomly selected speakers. Thus, a total
of 200 h of data was selected for manual transcription that would
subsequently serve as training material for ASR systems. Male
and female speakers in this corpus were more or less equally
distributed and a wide range of accents were covered (e.g., Hun-
garian, Italian, Yiddish, German, and Polish). The English ASR
test set consists of 30-min segments taken from 30 randomly
chosen speakers; results reported here are on a 1 h/20 speaker
subset of this collection. An additional test set of five full inter-
views was also created to support evaluation of natural language
processing (NLP) techniques (Section II-A).

The Czech corpus is smaller than the English corpus. The
ASR training set consists of 84 h of speech taken from 336
speakers. The speakers are predominantly Bohemian in origin
(73.4%), but there are also speakers from Slovakia (13.0%), and
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the Carpathians (5.2%).1 The Czech ASR test set consist of ten
interviews transcribed from beginning to end; results reported
here are on a 500-sentence subset of that collection.

The audio files were divided (roughly) into sentences by
the human annotators. Transcription was done using the Tran-
scriber 1.4.1 speech editing tool [9], which was modified to
incorporate Unicode for the transcription of Russian and Czech.
In addition to lexical transcription, the following nonspeech
sounds were marked: Tongue click, lip smack, cough, laughter,
breath, inhalation, UH, UM, background noise, silence, and
unintelligible. Names, places and sections spoken in a different
language were marked to the extent possible. The rules for
the entire annotation process have been published in detail
previously [10], [11]. The annotators worked at a rate of 15
times real time in Czech, 12 times real time in English and
18 times real time in Russian. Transcription inspection and
verification requires additional effort at approximately twice
real time. In contrast to other well-know transcription tasks,
such as BN and SW conversations [3], the heavily accented
and poorly articulated elderly speech posed severe problems
for transcribers and this is reflected in Fig. 1.

The compressed audio signal in MP3 format was stored at
a sampling frequency of 44.1 kHz. This signal was extracted
from the video and down-sampled to 16 or 8 kHz to match the
recognizer that was used. The original interviews were done in
stereo with the interviewer and interviewee in separate chan-
nels. Given the nature of the collection effort, it was not pos-
sible to ensure that recording conditions were always ideal; for
instance, it often happened that microphones were placed so that
the speakers are equally loud in each channel, and it is not un-
common for both the interviewer and interviewee actually to
have been recorded on the same channel. The occasional use
of far-field microphones in a noisy environment introduces ad-
ditional acoustic variability. A summary of the signal-to-noise-
ratio (SNR) as distributed over the English interviews is given
in Fig. 2. It can be seen that a significant fraction of the data is
noisy, with an energy level below 10 dB.

While it is important to the task to be able to process both the
speech of the interviewer and the interviewee, we decided to
use only the channel on which the interviewee was the loudest,
as the great majority of speech that occurs on either channel is
from the interviewee; in this way we are assured of transcribing
the greatest amount of speech for use as acoustic model training
data.

C. Acoustic Modeling

Pronunciation lexicons were constructed for the collections
based on existing English, Russian, and Czech resources. Pro-
nunciations were added as needed by transcribers to cover the
acoustic training set.

1) Acoustic Modeling—English: The audio signal was
extracted from the video and down-sampled to 16 or 8 kHz
to match the recognizer that was used. The 16-bit down-sam-
pled PCM signal was used to produce 24-dimensional mel
frequency cepstral coefficients (MFCC). The MFCC features

1Slovakia was part of the former Czechoslovakia from 1918 to 1992, and the
Carpatho-Ukraine was part of the former Czechoslovakia from 1918 to 1938;
people living there spoke Slovak and Ukrainian, respectively.

Fig. 1. Transcription times computed over the English acoustic training data.

Fig. 2. SNR computed over the English acoustic training data.

were computed from a 24-filter Mel filterbank spanning the
0 Hz–4.0 kHz frequency range for the 8-kHz system (System
I) and 0 Hz–8.0 kHz for the 16-kHz system (System II). These
two bandwidths were selected to enable comparisons between
state-of-the-art narrowband (SWB) and broadband (BN)
systems respectively. All feature sets use 25-ms frames with a
10-ms step, perform spectral flooring by adding the equivalent
of one bit of additive noise to the power spectra prior to Mel
binning, and use periodogram averaging to smooth the power
spectra. Every nine consecutive cepstral frames are spliced
together and projected down to 60 dimensions using a linear
discriminant feature space transformation to ensure maximum
phonetic discriminability. The range of these transformations is
further diagonalized by means of a maximum-likelihood linear
transform (MLLT) [12] to decorrelate dimensions.

The transcriptions used initially for acoustic model training
contained a significant number of transcription errors. Many of
these errors were due to the many foreign words, names, places,
and sequences of words uttered in a foreign languages (such as
German, Yiddish, or Hebrew), that the transcribers found unfa-
miliar. The manual refinement of these transcriptions was aided
by the use of the list of proper names provided by VHF; this
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resource proved extremely valuable, since the transcribers did
not have the specialized knowledge needed to identify words,
places, and individuals particular to this domain. Initial model
alignments were obtained using an existing ASR system built
on SWB training data [12]. The average log-likelihood of each
segment in the training data conditioned on the alignments was
used to reject the segments that had either transcription errors or
incorrect pronunciations in the lexicon. Pronunciations for the
many unseen words in this corpus were derived with the help
of existing dictionaries and tools using spelling-to-sound rules.
These alignments were also used to build decision trees (DTs)
[13] to capture the context-dependent variations of this speech
and the data at the leaves of the DT were modeled with Gaussian
distributions via a BIC-based procedure [12] and trained using
multiple iterations of the EM algorithm. The final models for
the two systems (System I and System II) had 3000 context-de-
pendent states modeled by 60 K Gaussians.

Speaker-adaptive models (SAT) [14] were trained via a
feature space MLLTs, i.e., for MLLR, for each training speaker.
The canonical model was first initialized as the speaker-inde-
pendent model. After fMLLR transforms for training speakers
were computed against the canonical model, the canonical
model was then re-estimated using the affinely transformed
features. This method is based on the SAT principle, but
differs slightly from SAT in that the normalization is applied
to the features. This corresponds to using a constrained max-
imum-likelihood linear regressing (MLLR) [15] transform
instead of a mean-only MLLR transform.

2) Acoustic Modeling—Czech: The acoustic training set
consisted of approximately 84 h of speech. The data at 44.1 khz
was parameterized as 15 dimensional PLP cepstral features,
with first and second cepstral derivatives. Features were com-
puted at a rate of 100 frames/s. Cepstral mean subtraction was
applied per utterance. Cross-word triphone acoustic models
were trained using the HTK Toolkit [16], [17]. The resulting
models had approximately 6000 states and 96 K Gaussians. A
silence model was trained by borrowing Gaussians from all
the nonspeech HMMs in proportion to their state and mixture
occupancies. The resulting model contained 176 mixtures per
state and was found to be useful in rejecting nonspeech events
during recognition.

D. Language Modeling

1) Language Modeling—English: Two basic language
models were trained on transcriptions of both 65 h and 200
h of data from this corpus using the modified Kneser-Ney
algorithm [18]. Since the training data is relatively small (320
k/1.7 M words, respectively), there is a high out-of-bocabulary
(OOV) rate, especially among personal and place names. To
address this, language models built from BN and SWB corpora
(158 and 3.4 M words, respectively) were interpolated with
the LM built from the VHF collection alone. The interpolated
weights were optimized to achieve minimum perplexity on
the held-out data from the VHF collection. The effect of an
increase in the in-domain material and the interpolation across
other speaking styles such as those seen in BN and SWB tasks
are illustrated in Table II. With the addition of more in-domain

data, the percentage of trigram counts used from the SWB and
BN corpora decreased from 66%, when only 320 K in-domain
words were used, to 26% when 1.7 M words were used. The
average OOV rate on the test set was 8.2% (with a 3.2% to
11.6% range). The final lexicon consists of 64 k words derived
from a combination of sources such as the PIQ, the cataloged
segment data and the human transcriptions.

2) Language Modeling—Czech: This transcribed corpus
(Tr, 84 h) is the only available spontaneous speech corpus
for Czech language modeling. Given the limited size of this
collection, investigations were performed to see whether the
use of other, out-of-domain sources of text data would improve
language model quality. Two collections were considered. The
news text corpus Lidové Noviny (LN, 33 M words) was a
convenient choice since it has been used in many other Czech
LM experiments [10]. However initial experiments suggested
that this collection was an inappropriate source of LM training
data for this domain; in particular, the LN text was found to
have a very high OOV rate (9.6%) on the task transcriptions.
The Czech National Corpus (CNC) was also considered as
a source of data. It is relatively large (approximately 400 M
words), and is extremely diverse. Rather than use the entire
corpus, we employed statistical methods to determine what
portions of the CNC are similar in “colloquiality” and lexical
choice to the interview transcriptions [19]. The hope was that,
due to the size of the CNC, we might find a reasonable amount
of data with high similarity. The method has been based on
two simple unigram models: one, , estimated over
the entire CNC, and the other one, , estimated over
the transcriptions at hand. A likelihood ratio then determined
whether a tested section of text was closer to the general CNC
or to the transcribed spontaneous speech corpus (Tr). Varying
the ratio threshold allowed us to effectively control the size
of the corpus as has been done in previous work [20]. At a
threshold of 0.8 the size of the selected corpus (named CNCS)
was 15.8 M words. An interpolated model (Tr-CNCS) has also
been created, showing the lowest OOV rate of all the models
used (Tables IV and V).

E. ASR Performance

1) ASR Performance—English: We first present ini-
tial recognition results on the English portion of the VHF
collection. A baseline WER was first computed using a
speaker-independent, MFCC system, built for the SWB task
[12]. This system was trained on the SWB, CallHome, CTIMIT,
and the National Cellular Corpora. The acoustic model com-
ponent consisted of 300 K diagonal covariance Gaussians, and
the lexicon contained 64 K words. The system achieved an
error rate of 47.3% on the spontaneous conversations in the
SWB 1998 Evaluation task. However, the speaker-independent
performance of this system was as high as 85.6% on this test
data (Table III) compared to the baseline system trained on
in-domain data. Similarly, the English system trained on VHF
data alone (System II) has a performance of 69.4% on the SWB
1998 Evaluation task. It is interesting to note that even though
both corpora are recorded conversations between two individ-
uals, the drastic differences in the nature of the speech coupled
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TABLE II
PERPLEXITY AND WORD ERROR RATES FOR VARIOUS ENGLISH

LANGUAGE MODELS

with the high OOV rates result in poor speech-recognition
performance.

The speaker-independent acoustic models from System
I were used in the language modeling experiments results
reported in Table II. It can be seen from Table II that both
increasing the in-domain text data as well as incorporating data
from other corpora produces a reduction in perplexity and the
overall WERs. A gain of 4% absolute can be obtained when
the in-domain data is tripled and augmented with similar data
from other related corpora.

Table III presents the speech recognition results obtained
using different acoustic models on this new task. The two sys-
tems used in these experiments were built by down-sampling
the original audio signal recorded at 44.1 to 8 kHz (System I)
and 16 kHz (System II). While both systems are comparable
in performance, the wider bandwidth system (System II) has
a relative 6% performance improvement over the bandlimited
system. The speaker-independent system (System II) built on
65 h of VHF data produces a WER of 54.3% on this task (Row
2). This reiterates prior work in the literature that significant
improvements, such as halving the WER, can be obtained
when the acoustic models are trained using in-domain data.
When this system is augmented with a language model that
has been trained on the VHF collection, further improvements
can be seen (Row 3). The SAT models reduce the error rate
further to 43.6% (Row 4). Subsequent adaptation using MLLR
and an improved language model results in a WER of 40.2%
(Row 7). If transcripts at a lower WER (Row 5) obtained
using techniques such as consensus decoding [12] are used for
computing the MLLR transforms, the WER can be reduced
further to 39.6% (Row 8).

As an initial investigation into refining the pronunciation lex-
icon for the task, we investigated the use of context-free syllabic
models for use in a mixed syllabic-phonetic dictionary. Syllable
clusters were derived using software available from NIST [21]
and the lexicon used in Systems A and B. This software imple-
ments syllabification rules that define permitted syllable-initial
consonant clusters, syllable-final consonant clusters and prohib-
ited onsets [22]. For example, consider the word "BUDAPEST"
which has "B UW D AX P EH S T" as one of its phonetic pro-
nunciations. The English syllabic representation was "B UW
D_AX P_EH_S T", and if enough data was available, acoustic
models would be trained for each syllable. However the syllable
"P_EH_S" occurs infrequently, so the pronunciation backs off
to the phonetic level and the word has the "syllabic" pronunci-
ation "B UW D_AX P EH S T". During recognition, a dictio-
nary is created that has both the phonetic and syllabic forms for
each word in parallel. The number of states in the syllable model

TABLE III
ENGLISH ASR PERFORMANCE (WER%)

were designed based on the number of phones in the syllable so
that the syllable and phonetic model had the same complexity.
The joint modeling of syllables and context-dependent phones
provides a 0.5% absolute improvement in recognition accuracy,
from 39.6% to 39.1% [23].

2) ASR Performance—Czech: The acoustic modeling
and adaptation experiments reported here were performed
using HTK with an interface developed for the AT&T Large
Vocabulary Decoder [24]. Models and features generated with
HTK are used by the AT&T Decoder to generate hypotheses
for unsupervised MLLR adaptation and lattices for acoustic
rescoring.

Results with each of the Czech language models are summa-
rized in Table IV [19]. The effect of OOVs is readily apparent;
the difference in performance between LM-Tr and LM-Tr-C
is almost exactly the OOV rate with respect to the acoustic
training set transcriptions. The worst performance is obtained
under the Lidove–Noviny language model (LM-LN). We note
that the degradation relative to LM-Tr is not explained by the
LM-LN OOV rate alone; the LN corpus itself is clearly mis-
matched to this task. The language model trained on the filtered
CNC (LM-CNCS) achieves performance that is worse than the
one obtained with the LM-Tr model but significantly better than
with the LM-LN.

Although the LM-CNCS language model did not perform as
well as the models trained on the acoustic training set, we took
advantage of their different vocabularies and created a merged
model LM-Tr-CNCS: we merged the CNCS and Tr vocabu-
laries, retrained bigram language models in each domain (ob-
taining LM-TrU and LM-CNCSU), and used the SRILM Toolkit
[25] to interpolate them linearly using the following formula:

(1)

WERs are reported in Table V for some values of the param-
eter . For , which corresponds to training on the CNCS
corpus alone, we find an improvement relative to the 52.99%
WER result reported above due to the expanded vocabulary.
Similar gains are observed at the value 1.0, which corresponds
to training the language model on the acoustic training set
alone. Clearly some benefit is obtained in each case through
a merging of the vocabularies between domains. Further
gains can be found at intermediate values of the interpolation
constant with a peak at about . These results validate
the statistical filtering used to select the CNCS collection. We
find improvement both from an enlarged vocabulary and from
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TABLE IV
CZECH ASR PERFORMANCE WITH LANGUAGE MODEL DOMAIN

increased predictive power obtained by merging the filtered
language model with an entirely in-domain language model.
Table V shows the gains that can be obtained with unsupervised
MLLR using two regression classes, for speech and for silence.

F. Analysis of Factors Affecting MALACH ASR Performance

We have presented in the Section I an example showing the
nature of the highly spontaneous speech found in the interviews.
The ASR results presented in Sections II-E.1 and II-E.2 illus-
trate the difficulties encountered due to OOVs, multiple lan-
guages, and heavily accented, elderly speech. As discussed in
Section II-B, the noisy environments combined with poor artic-
ulation pose difficulties even for human transcribers. We pro-
vide here further analysis of the influence of these factors on
ASR performance.

1) Speaker Population: Many of the survivors were origi-
nally from regions where the language in which they gave their
interview (for example, English or Russian) was not frequently
spoken. This resulted in heavily accented speech. It also resulted
in speaking styles (choice of words) that were influenced by
their place of origin. The problem is compounded by the fact that
many of the interviewees traveled extensively during the course
of their lives and in the process learned many languages; most
of the interviewees claim proficiency in four to five languages.

A surprising observation follows from segregating the results
of the third row in Table III into performance over interviewers
and interviewees: the WERs for the interviewee speech in
English is 39.4% while the rate for the interviewer is 47.9%.
This is almost certainly due to the limited amount of interviewer
speech within the interviews (typically less than 20%; 9% on
average). This performance difference strongly suggests that
the interviewers and interviewees are in fact from very different
populations. This may pose a serious problem for cataloging
applications since many spoken archives are recorded in the
form of interviews, and the questions posed by the interviewers
are at least as important as the responses by interviewees.

2) Spontaneous and Colloquial Nature of the Inter-
views: The interviews were conducted with the specific
purpose of covering certain basic topics that would provide
an insight into human experiences during a period of time in
history. To this extent, there is a structure to the interviews,
beginning with biographical questions followed by questions
on education, occupation, living conditions, life in the camps,
liberation, etc.. Therefore the interview segments have some
initial awkwardness that gives way to spontaneous speech filled
with disfluencies and sometimes whispered speech combined
with nonspeech events such as crying and laughter, as they
get into the middle of their stories. There are sections of
frequent interruptions by the interviewer, sometimes to assist
the interviewee along, and these rapid speaker changes and

TABLE V
CZECH ASR PERFORMANCE FOR THE MERGED LANGUAGE

MODEL LM-Tr-CNCS, MERGED VOCABULARY (81.9 k WORDS).
UNSUPERVISED MLLR RESULTS ARE FOUND AT � = 0:75

cross talk pose problems for recognizers. Background speech
and frequent interruptions pose problems for adaptation to the
interviewee’s speaking style.

The following experiment illustrates the extent of the spon-
taneous nature of the speech and the difficulties in modeling
the speaker population. Two native English speakers were asked
to read an hour of transcripts from the English interviews. An
ASR system trained on BN data (without any VHF data in the
acoustic or language models) achieved a WER of approximately
12% on the transcripts as read by these speakers (the baseline
WER of this system on the F0 portion of the BN development
test set was 18%). However, this system had a WER of greater
than 80% on the same hour of speech from the VHF collection.
This clearly illustrating the problems with the speaking styles
and acoustics seen in this corpus.

The problem is compounded in Czech, where spontaneous
speech is often colloquial in nature, and differs significantly
from the standard Czech as used in writing or in broadcast
media. This is further compounded by the usual stylistic
differences seen between spoken and written material. The
results in Tables II and IV clearly indicate the relatively large
gains obtained for both English (4% absolute) and Czech (6%
absolute) when merging the language model with data from
other relevant domains.

3) Foreign Words: Many of the ASR errors are due to OOVs,
a good number of these are foreign words, names, places and se-
quences of words uttered in a foreign language (such as German,
Yiddish, or Hebrew). In English interviews, given that English
is not the native language for almost all of these speakers, there
is a tendency to switch to their native language whenever the
interviewee cannot find the appropriate term in English, such
as when describing cultural events. Therefore, detecting uncued
switches between languages such as Yiddish, German, Polish,
and English is essential. Many of these place names consti-
tute cities, streets and names of concentration camps mentioned
during the course of an interview. Although a lexicon can be
built with the most frequently occurring words in this corpus,
as the number of interviews processed grows, many new words
will need to be added. It is very important for these words to be
recognized correctly in order to aid subsequent retrieval tech-
nologies as explained in Section III.

G. Steps Toward the Automatic Transcription of the Entire
VHF Archives

Processing of 500 h of English interviews has been com-
pleted and is available for NLP and search studies. A major
challenge in decoding such volumes of data is the time taken for
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actually doing so. The decoding process (including adaptation
to speakers) consists of pre-processing steps that include the
selection of the appropriate channel to be processed (VHF
data is recorded in stereo), acoustic segmentation of the audio
into speech and silence/noisy silence segments, clustering to
generate coherent-speaker clusters, and efficient storage for
processing. In order for this to be a viable solution, the entire
process must be completed within 10xRT. Our current large
vocabulary speech recognition system requires a segmentation
of audio prior to recognition: this is a prerequisite for practical,
rather than algorithmic reasons. Separation and removal of
nonspeech segments will remove many insertion errors and
provide robustness to the background noise during interviews.
Also, the decoder benefits from segmentation in two ways:
short segments reduce per-segment computational load for our
current decoder implementation and eliminating nonspeech
segments reduces the overall computational load. In addition,
speaker labeling of segments allows adaptation to be performed
on speaker-coherent clusters, which will further improve
performance as illustrated in Section II-E1. Imperfect segmen-
tation raises the challenge of automatically grouping (possibly
speaker-impure) segments into clusters prior to adaptation;
poor automatic groupings may impact gains from speaker adap-
tation. A detailed discussion of our progress toward identifying
automatic schemes for the segmentation and speaker clustering
process giving good end-result recognition performance is
given in [26]. Detailed descriptions of the decoder used for
processing these 1000 h are presented elsewhere [27], [28].

III. THE NLP COMPONENTS

In our NLP work, we have focused on three technologies
named Entity Detection, Document Segmentation, and Segment
Categorization.

Automatic Named Entity Detection plays two separate roles
in the project. First, identifying named entities may assist the
user by increasing the readability of the material presented by
various search-oriented components. Second, named entity fea-
tures can be applied to improve performance of other machine-
learning components, as suggested by some of the results of our
Topic Tracking work done in NIST’s TDT evaluation [29].

The purpose of Document Segmentation is to partition the
interviews into shorter (a few minutes long), topically coherent
segments to be used as retrieval and annotation units. In con-
trast to previous Story Segmentation work described in [30],
where the goal was to divide the transcript of news program-
ming into individual stories, Document Segmentation deals with
a problem of identifying topic boundaries within a transcript of
a single interview. Unlike the blocks of BN programming, the
structure of the interview is not based on a script containing pre-
defined story boundaries, but allows spontaneous changes of the
topic. This difference causes multiple issues influencing seg-
mentation performance, such as less pronounced topical bound-
aries between the VHF interview segments than between news
stories, less topical variety between the segments, and wider
variance of length between the segments.

Automatic Segment Categorization aims to associate each
interview segment with multiple semantic categories. The cate-

gories can be used directly by the end user or applied in high-
level search components.

The VHF collection provides unique opportunities for re-
search work in the three mentioned areas thanks to substantial
amounts of data manually annotated with segment boundaries
and semantic categories, and, as shown below, poses a real chal-
lenge to achieve a practical level of performance, owing to the
richness and inherent heterogeneity of the data.

A. Named Entity Detection

We adopt an HMM model [31] to classify 31 categories
of entities [32]. We tailored the system for VHF transcribed
text, and annotated a 50 000 word development test corpus
that comes from 30 random distinct speakers. We measure
system performance by , the standard 3X (extent x content
x type) F-measure, and slot error rate (SER) [33]. To enhance
the usage of our text data, we apply domain-specific rule-based
preprocessing to remove noise tokens and detect semantic sen-
tence boundaries. This contributes 10% relative improvement
to system performance.

We annotated 460 000 words of VHF transcription as training
data for our system, to attain and .
In contrast, a baseline system trained on annotated newswire
text of 1 million words attains only ,

. Furthermore, even a combined system that trains from
both sources of data attains only , ,
showing relatively small improvement in , yet large degra-
dation in SER.

The results affirm the importance and value of high quality
in-domain data in the corpus-driven Named Entity Detection
approach. In fact, even the addition of large quantities of lower
quality (out-of-domain) data do not necessarily help improve
performance. Error inspection indicates that our named entity
detection is affected by the rather limited quantity of training
examples, especially in a domain of spontaneous and unpre-
dictable speech, which hampers the system’s generalization
ability. We conclude that our system can further benefit from
additional in-domain training data.

B. Segmentation

1) Statistical Models: For this study, we have extended our
previous work done as part of the TDT project [30]. Our seg-
mentation algorithm uses a combination of two probabilistic
models, a DT and a maximum entropy (ME) model [34], to com-
pute the probability of a segment boundary occurring at a given
sentence boundary determined during the transcription process.

The DT model uses a combination of features, including pres-
ence of words and bigrams indicating segment boundaries (in-
dicators are learned automatically from the training data by a
mutual information criterion) and features comparing the dis-
tribution of nouns on the two sides of the proposed boundary.
The ME model uses the features used by the DT and individual
words, bigrams, and trigrams.

2) Training and Test Data: Our training data set consists
of 15-min intervals extracted from 710 interviews, which rep-
resents 177.5 h of speech. The test set is based on four full
interviews, representing 7.5 h of speech. Using timing in-
formation, we aligned the transcribed text with the segment
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Fig. 3. Document segmentation: DT versus ME models.

Fig. 4. Document segmentation: training data size.

Fig. 5. Document segmentation: human versus ASR transcripts.

boundaries constructed by VHF, creating a training set of 2856
segments and a test set of 168 segments. We used sentence
boundaries established by the transcription process (Section I)
in experiments with both human and ASR transcripts. Our

previous results [43] show only a small performance degra-
dation when using silence-based sentence boundaries on ASR
transcripts.

3) Measuring Segmentation Performance: To measure seg-
mentation performance we used an approach similar to the one
applied in the TDT segmentation task [35]. The performance
measure is based on determining the agreement between com-
puted and reference boundaries, using a sliding window moved
through the segmented data. At each position of the window
we declare correct segmentation if there is both a computed
and a reference boundary or neither a computed nor a refer-
ence boundary found in the window. Similarly, a false alarm
is declared if there is a computed boundary and no reference
boundary in the window, or a miss is declared if there is no
computed boundary and a reference boundary in the window.
In contrast to the technique used in the TDT project, where the
above described computation is performed for every word posi-
tion in the data, we move the window so that the computation is
done only with windows centered at sentence boundaries. The
window length is set to ten words.

4) Comparing Segmentation Performance of the DT and ME
Models: Fig. 3 compares segmentation performance of the DT
and ME models. We observe that the ME model outperforms the
DT model over most of the range of operating points. We ob-
served a similar effect when segmenting BN stories [30]. Fig. 3
also shows results based on combining the scores of the DT and
ME models in a linear way, putting 90% of the weight on the ME
model. Using a combined model brought modest, but consistent
performance gain in segmenting BN stories, whereas there is no
improvement on topic segmentation of the VHF data.

5) Effect of Training Data Size on Segmentation Perfor-
mance: To measure how segmentation performance depends
on the size of the training set, we subsampled the available
training data in a pseudo-random fashion to obtain smaller
sets. Fig. 4 shows that the performance keeps improving as the
training data size grows and that the size of the available set
does not approach a point where the benefit of larger training
set starts to diminish.

6) Segmenting Human and ASR Transcripts: Fig. 5
compares segmentation performance on manually and auto-
matically transcribed data. The relative degradation caused
by speech recognition errors is quite uniform over a wide
range of operating points. Table VI compares performance
degradation caused by ASR errors at the segmentation equal
error rate (EER) operating point. ASR transcripts with 42%
WER experienced less than half the performance degradation
observed with 51% WER.

C. Categorization

1) Ground Truth: An important part of the cataloging
process carried on by the Visual History Foundation was the
assigning multiple category labels to segments of interviews.
VHF uses a set of over 32 000 categories, ranging widely
from easy-to-define entities as geographical names to broader
concepts, e.g. various political or psychological characteristics.
Examples of category names can be found in the first column
of Table VII. The categories are organized into a hierarchy with
some cases of multiple inheritance. A single interview segment
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is frequently assigned to multiple categories, the average
number of categories per segment in the data we experimented
with is 5.5.

2) K-Nearest Neighbors Categorization: We selected a
well-studied [36] k-nearest neighbors (or kNN) technique in
our initial categorization experiments. The kNN approach is
based on the premise that a test segment is likely to belong
to the same categories as the training segments similar to it.
Given a test segment, the algorithm first finds its closest
training segments (k nearest neighbors). To compute similari-
ties between segments we used a symmetrized version of the
Okapi formula [37], with morphological stem unigram features
applied to represent the individual segments. The categories
associated with the segments are assigned scores, equal to
summations of similarities between the individual segments
and the test segment. Finally, the list of candidate categories
is sorted by the scores and the list is thresholded to select the
category assignments of the test segment.

3) Categorization Using ME Model: In ME models for seg-
ment categorization, the individual word n-gram features are
used to predict the likelihood of a segment being assigned to
a category. We experimented with two versions of the model:
the first one is set up as a multi-categorizer and computes the
likelihood of the current segment with respect to all the cate-
gories, the second one consists of separate binary models for the
individual categories. Table VII shows examples of categories
together with feature words selected by the training process to
represent them.

4) Categorization Experiments and Results: In our catego-
rization experiment we used a training set based on 683 15-min
intervals of English interviews for which we have human
transcripts available. This data represents 2618 categorized
segments (1.3 million words). The test data consists of 334
segments (129 000 words).

We measure categorization performance using the common
precision/recall approach. To obtain a single performance in-
dicator, we compute , the harmonic mean of precision and
recall. We compute both micro-averaged scores, where all
the individual category assignments contribute equally to the
overall score, and macro-averaged scores, where the preci-
sion, recall and measures are first computed individually
for each category and then averaged over the categories, making
equal the contribution of the individual categories. To com-
pute macro-averaged performance indicators based on a set
of categories with varying number of corresponding correct
segment assignments, individual category precision values are
interpolated to a set of standard recall levels [38]. We also
compute segment-based macro-averaged scores, in which the
precision and recall values are computed separately for each
segment and then averaged and interpolated in the similar
fashion as the category-based macro-averaged scores.

Based on our initial categorization experiments investigating
the effect of number of training segments on categorization per-
formance (Fig. 6), and the fact that currently available training
set is roughly eight times larger than the test set, we include in
our performance computation only the categories with at least
ten training samples available. Out of 323 such categories, only
247 are represented in the test set, the remaining 76 neverthe-

TABLE VI
SEGMENTATION: HUMAN AND ASR TRANSCRIPTS

TABLE VII
ME MODEL FEATURES

Fig. 6. Categorization: number of training segments per category, kNN, human
transcripts, micro-averaged.

Fig. 7. Categorization: kNN, micro-averaged.

less contribute to the overall scores by potentially reducing the
precision in the micro-averaged computation; their precision is
set to zero for the whole range of recall values in the macro-
averaged computation.
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Fig. 8. Categorization: kNN, macro-averaged categories.

Fig. 9. Categorization: kNN, macro-averaged segments.

Fig. 10. Categorization: ME, micro-averaged.

Figs. 7–12 and Table VIII summarize the categorization re-
sults and illustrate the following trends.

• Current performance level on the given category set does
not reach the point allowing broad practical application.

• KNN-based categorization outperforms the ME model
under all the tested conditions.

Fig. 11. Categorization: ME, macro-averaged categories.

Fig. 12. Categorization: ME, macro-averaged segments.

• Speech recognition errors cause substantial performance
degradation. ASR transcripts with 42% WER suffer more
than half the performance degradation observed with 51%
WER.

Figs. 13 and 14 contrast the performance of a single ME
model trained to cover multiple categories, and a set of ME
models trained to make binary decisions about the individual
categories. Measured by the micro-averaged scores, dominated
by the frequent categories, the single model outperforms the set
of binary classifiers, whereas measured by the category-based
macro-averaged scores, which assign equal weight to all cate-
gories, the set of binary classifiers outperforms the single model.

5) Analyzing Categorization Results: To analyze the cate-
gorization results, we examined the categorization algorithms
at operating points yielding the best value for the individual
categories and segments. We were not able to identify cate-
gory or segment properties linked in systematic and quantifiable
way to performance level. The difficult to handle categories are
often the ones describing broader concepts as “evasion”, “flight
preparations” and “liberation”, and categories specifying a lo-
cation together with a time interval, such as “France, May 10
1940–February 28 1942”. The system performed better on more
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TABLE VIII
CATEGORIZATION: kNN, HUMAN AND ASR TRANSCRIPTS

Fig. 13. Categorization: kNN, ME—single model, ME—separate models,
micro-averaged.

Fig. 14. Categorization: kNN, ME—single model, ME—separate models,
macro-averaged categories.

specific categories, such as "migration from Poland" and cat-
egories describing a single location. Some of the poorly per-
forming segments are very short.

IV. SEARCH ARCHITECTURE

The four capabilities described above, speech recognition,
named entity recognition, topic-based segmentation, and topic
classification, provide a sufficient basis for the design of inter-
active search systems [39]. In this section, we briefly highlight
what is known about the needs of real users and then explain
how these capabilities can be used together to meet those needs.
We are currently implementing various components of a com-
plete system.

A. User Needs

To assess user needs we conducted three sets of studies:
1) analysis of 600 written access requests received by VHF;
2) a week-long observation of the searching behavior of seven
scholars from six disciplines in the humanities and the social
sciences; and 3) a week-long observation of the searching
behavior of nine experienced secondary school teachers. The
most striking observation was the wide variety of users and
uses. The mission of VHF is tolerance education, so it is not
surprising that educators are well represented among the groups
that we studied. The presence of historians and film producers
is also not surprising. But there are also users with interests
in anthropology, material and nonmaterial culture, linguistics,
psychology (e.g., trauma studies), human rights advocacy, and
law enforcement, among others. Two-thirds of the requests
specified named entities (places, persons, and/or events); the
remainder asked about more abstract concepts. Examples
include The liberation of Buchenwald and Dachau concentra-
tion camps, Sarah Ehrenhalt-Israel’s life, and Motivational
strengths that sustained survivors through the Holocaust. Some
searches required access to concepts that were not present in
the thesaurus but that might be determined using speech recog-
nition (e.g. find interviewees with fathers who were butchers).
Some others involved concepts that might be difficult to assess
using any technique (e.g., show only age-appropriate materials
that would be suitable for classroom use).

We found that historians often required access to entire
interviews, while other searchers (e.g., educators and film
producers) needed specific passages. This points to a need for
automatic segmentation in some cases. Moreover, we observed
that users sometimes found it challenging to understand the
context of retrieved segments, in part because stories are often
told in an order different from the order in which events were
experienced. This suggests that extraction of time expressions to
support automatic generation of event timelines would be useful.
We found that interviewer questions can be good markers when
navigating an interview, that they provide useful access points
for search, and that they can serve as useful aids for interpretation
of what was said. This suggests that speaker change detection
and speaker tracking would be useful capabilities.

Users were often observed taking copious notes, sometimes
manually transcribing selected passages while watching inter-
views. This makes sense, since the information obtained from
interviews will often be used to create of a written product (e.g.,
a book). If captured and shared in appropriate ways, these notes
might be leveraged for the benefit of other users, or perhaps even
as training data to improve the accuracy of automatic system
components. This illustrates the benefits of transcriptions while
placing the requirement for automated transcripts to be at a level
of accuracy that will render them useful.

B. Search System Architecture

Fig. 15 shows the key components in a proposed interactive
search system architecture. The three components on the left
side of that figure have been described above; in this section we
focus on the four components to the right. The index is a content-
addressable store, typically implemented as a hash table. When
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Fig. 15. Search system architecture.

presented with desired content (e.g., spoken words, normalized
forms of person or location names, or automatically-assigned
topic labels) the index returns a list of segments that contain or
have been annotated with the specified content and a weight that
represents the degree to which the specified content is describes
the segment.

We view search as an iterative process performed by a
searcher who uses the machine as a tool, rather than as a task
performed autonomously by the machine. Robust facilities for
query formulation, recognition of useful segments, and iterative
query reformulation are therefore needed. Because many types
of content features are indexed, functions specialized to each
are needed in the query formulation component. Users can find
thesaurus topic labels in two ways: by search, and by browsing.
Approximate substring matching is a useful search technique
when seeking a topic based on the characters contained in a
label; free-text ranked retrieval techniques are more appropriate
when searching based on definitions or scope notes (both of
which are contained in the VHF thesaurus). If the search results
in a conceptually related topic label, hierarchical browsing
offers an alternative way of reaching the desired label. Similar
functions can be provided for geographic locations, and map
visualizations offer an additional way to specify desired loca-
tions. Similarly, timelines with range sliders offer a natural way
of specifying a desired range of dates.

Person names pose unique challenges for systems based
on speech recognition because in some cases they may not
be present in the recognizer’s vocabulary. We can minimize
that effect for the VHF collection by including names found
in the pre-interview questionnaires, but the prevalence of
multiple transliterations for the same name and the presence
of unanticipated names in some interviews result in a need for
name searching based on phonetic similarity.

Searching based on spoken words, the third major type of
indexed content, is somewhat more straightforward. The usual
approach is to represent terms in a normalized form (e.g.,
automatically removing common endings to produce a stem)
that matches the form that is indexed. In BN collections, it has
proven to be useful to enrich the index with additional terms
that exhibit similar usage in a collection of electronic text on
the same subject [6], and it seems likely that similar techniques
would be useful for spontaneous conversational speech as well.

When a fully formulated query is available, the automatic
search component can then identify potentially useful docu-
ments. The search component must balance three desirable char-

acteristics: high precision, high recall, and explainable behavior.
These requirements are typically in tension; techniques that in-
crease recall often do so at the expense of precision, and tech-
niques such as blind relevance feedback that tend to limit this
adverse effect often do so at the expense of explainability. Bal-
ancing the contribution from each type of indexed feature on the
retrieval process presents a particular challenge; learned feature
weights are practical in fully automated applications, but inter-
active applications can benefit from providing a greater degree
of user control. Finally, three types of “proximity” features must
be considered; temporal proximity in the interview (terms from
adjacent segments can offer additional evidence for topicality),
conceptual proximity in the thesaurus (is-a and part-whole rela-
tionships can serve as a basis for query expansion), and phonetic
similarity (when searching for spoken words that are outside the
recognizer’s vocabulary).

Ultimately, searchers must judge which of the retrieved seg-
ments (or the interviews that contain those segments) meet their
needs. In text, this is typically achieved by coupling a ranked list
of brief surrogates with rapid access to the full text of each doc-
ument. Unfortunately, replay of recorded speech is not rapid;
with 3-min segments, listening to just the top ten retrieved seg-
ments would take half an hour. One way to overcome this lim-
itation is to display two-level surrogates [40]; a brief surrogate
for display in a ranked list, and a more extended surrogate that
can be examined before committing to the replay of a selected
segment. In our application, we can construct these surrogates
using the recognized words, the identified named entities, the
assigned thesaurus labels, and the pre-interview questionnaire;
similar features have been found to be a useful basis for selec-
tion in previous studies [41]. Map and timeline displays could
also be helpful, since locations and times were observed in our
user studies to be important bases for selection in some cases.

In a design space this large, effective techniques for formative
evaluation are essential. While user studies offer important
insights, repeatable and affordable techniques for evaluating
the effectiveness of the automated search component are also
needed. We have therefore created an initial ranked retrieval
test collection with 28 topics and over 600 h of automatically
transcribed speech from interviews that were not used to train
the ASR system. The 28 topics were based on actual user
needs expressed in the 600 written requests to VHF that we
examined, and relevance judgments were made using a search-
guided assessment methodology that has demonstrated excellent
coverage of the relevant document set in the Topic Detection
and Tracking evaluations. This test collection fills an important
gap in the available set of evaluation resources, augmenting the
existing ground truth annotations that are available for evaluation
of automated segmentation, classification, and named entity
recognition.

C. Expanding the Design Space

The segment-then-label strategy described above draws on
techniques that were originally developed for searching BN [2].
Since news programs are typically created by stringing together
a sequence of stories, a segment-then-label decomposition is
well matched to both the nature of the collection and to a clearly
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understood user need (finding stories). The situation is far less
clear in spontaneous speech, however. The interviews in our
collection do exhibit a segmentable structure at a very broad
scale; typically the first 20% addresses pre-war experiences,
the middle 60% wartime experiences, and the remaining 20%
post-war experiences. But finer-grained decompositions are
more troublesome; it is sometimes hard to say where one topic
ends and another begins. This problem is exacerbated by the
limitations of our present understanding of the implications of
different decisions about segmentation for the searcher; some
uses may require extended segments in order to provide enough
context (e.g., presentations intended to provoke classroom
discussion), others might need only a specific statement (e.g.,
illustrating a point that has already been stated in a docu-
mentary film). If our initial “one size fits all” strategy proves
unsatisfactory, we plan to explore alternatives in which we
associate labels with spans of time independently of the spans
assigned to other labels. This label-then-segment approach
would make it possible to then assemble segments based on the
minimum span that could satisfy the searcher’s request [42].

The second half of this project will increase its focus on issues
related to end user search, and many of these ideas presented
here are currently being implemented.

V. CONCLUSIONS

Our overall goal is to provide significantly easier access
to large collections of spontaneous conversational speech.
In this paper, we described the creation of what we believe
to be the world’s first large-scale collection of spontaneous
speech with the characteristics needed to evaluate information
access technologies. Our ASR results on this collection are
now sufficiently accurate to support downstream processing in
two languages, English and Czech. We have created reference
implementations for three key capabilities, named entity recog-
nition, topic-based segmentation, and segment categorization,
and we have explained how these components can be used
together as a basis for interactive search. Our understanding
of the requirements that guide this design has been informed
by the results of multiple user studies, and we have developed
a test collection that reflects those needs that can be used to
characterize ranked retrieval effectiveness.

The research reported above has yielded three key insights:
1) adequate accuracy can be achieved by state-of-the-art recog-
nition techniques to support many components of downstream
processing of spontaneous conversational speech; 2) topic
boundaries can be recognized reliably in spontaneous con-
versational speech, and human performance on that task can
be approximated reasonably well by automated techniques;
and 3) search-guided relevance assessment is a practical way
of building a ranked retrieval test collection for spontaneous
conversational speech. We are not yet satisfied with the cate-
gorization accuracy that we have achieved, and our analysis of
those results points to a need for a more nuanced approach in
which events, broad concepts, locations, and times are handled
separately. Together, these insights inform our conceptual
design for an interactive search system that can exploit the
capabilities we have constructed, and that design in turn

sharpens our understanding of the needed capabilities from
each component. This, we believe, is the key to mastering the
challenge of building systems that provide effective access to
large collections of spontaneous conversational speech.
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