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Abstract— An augmentative and alternative speech com-
munication (AASC) aid comprises a speech recognition
system and a speech synthesis system. The main challenge
in developing such an aid for dysarthric speakers lies in
handling errors in the text derived from the recognition
system. These errors (substitution, deletion, and insertion)
may be due to inability of a dysarthric speaker to utter
certain phones (articulatory error) or due to inaccuracy of
the models trained (modeling error). Most existing AASC
approaches only focus on the articulatory errors and the
ones that do address both errors, and do not differentiate
between them. However, this paper performs a three-level
cascadedanalysis to identify and distinguishbetween these
errors, as differentiating these errors will aid in appropri-
ately handling them. Furthermore, analyses in the paper
are independent of the syntax of utterances. Based on
these analyses, weighted phone confusion transducers are
formulated and used to correct erroneous text from the
recognition system. The corrected text is finally synthesized
by a text-to-speech synthesis system. The proposed AASC
is observed to significantly reduce a word error rate of
severe dysarthric speakers from 100% to 41.52%, moderate
from 61.85% to 18.08%, and mild from 12.23% to 8.55%.

Index Terms— AASC, dysarthria, pronunciation errors,
acoustic modeling errors, confusion transducer.

I. INTRODUCTION

DYSARTHRIA is a neuro-motor disorder that could be
caused due to cerebral palsy, a traumatic brain injury,

stroke, or any cerebellar disease. This causes the speech motor
control system to become weak, causing slow or uncoordinated
articulatory movement, resulting in unintelligible speech.

Many treatments have been proposed to improve the intel-
ligibility of dysarthric speech depending on type of dysarthria
and its severity. Treatments typically include articulation
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and phonological treatments, where the speakers are taught
proper production or pronunciation of speech sounds and
phonological rules of a language. However, these treatments
are not equally effective on all dysarthric speakers and the
outcome is subjective. Therefore, an artificial remedy, namely
augmentative and alternative communication (AAC), through
technological assistance, might be more effective and provide
a better way for communication.

AAC can be accomplished using speech-output communi-
cation aids (SOCA) and speech-input speech-output commu-
nication aids (SISOCA). Speech-output communication aid
requires any user to type the text that he or she wishes
to speak or select an icon to convey desired information.
A text-to-speech (TTS) synthesis system may then be used
to convert the information (in textual form) to speech [1].
However, as reported in [2], dysarthric speakers with motor
disorders prefer to speak, since it is the most natural mode
of communication. Also, dysarthric speakers ought to practice
speaking to improve their speaking skills, while Speech-output
communication aid restricts dysarthric speakers from doing
this, which could possibly lead to further deterioration in their
speaking skills.

Therefore, a more viable means of AAC would be through
speech-input speech-output communication aids (SISOCA).
This is an augmentative and alternative speech communica-
tion (AASC) aid that takes dysarthric speech as input, and
results in normal or clear speech as output, with reduced
keyboard intervention. One such system is described in [3].
It recognizes dysarthric speech as isolated words, frames a
message from the recognized words, and uses a TTS system
to synthesize the framed message. An important factor in
successful functioning of a SISOCA is the performance of the
recognition system, since an erroneous recognition outcome
would result in synthesis and delivery of an incorrect message.
In this regard, a lot of effort is being directed globally to
dysarthric speech recognition (DSR), specifically in identify-
ing most suitable features to be used, modeling techniques,
handling sparse data, and handling recognition errors. These
are discussed below.

Literature reveals that the choice of acoustic features plays
an important role in DSR. In this regard, [4] uses Mel
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frequency cepstral coefficients, while [5] uses articulatory
features, obtained using electromagnetic articulograph (EMA),
since they may be more suitable for dysarthric speech recogni-
tion. However, articulatory features are tedious and expensive
to obtain.

Different modeling techniques have also been adopted for
the DSR, namely hidden Markov modeling (HMM) [6],
support vector machines (SVMs) [7], Kullback-
Leibler divergence-based HMM [8], and deep learning
methods like artificial neural network (ANN) [9] and
hybrid ANN-HMM [4]. However, all these have been used
for isolated word dysarthric speech recognition. Further,
deep learning methods also require a large amount of
training data [9], which is not always easy to obtain from
dysarthric speakers. To handle the scarcity in dysarthric
speech data, a speaker adaptation technique is typically used,
as in [10]. However, for speakers with severe dysarthria,
speaker-dependent (SD) systems would be more suitable,
since the dysarthric speaker’s speech characteristics would be
far too different from those of unimpaired speaker’s speech
data that are used to train initial speaker-independent models.

Despite careful selection of appropriate features and mod-
eling techniques, more often than not, the recognized text is
prone to errors, primarily owing to pronunciation or articu-
latory errors of the dysarthric speaker and also due to errors
introduced by the recognition system due to inaccurate training
of models (recognition or modeling errors). In this regard,
the errors in the DSR system ought to be corrected and this
is typically done through use of dictionaries and transducers,
as elaborated below.

In [11], pronunciation errors or deviations of each dysarthric
speaker are identified through a perceptual analysis and a
speaker-specific pronunciation lexicon is created based on
this analysis. This lexicon consists of multiple pronunciations
for each word, that reflect errors specific to each dysarthric
speaker. Although this method handles the pronunciation
errors, it does not take measures to reduce the errors introduced
by the recognition system.

A combination of feature representation and feature pre-
diction is used in [12] to correct errors of the DSR system.
As a first step, speech is converted into a phone sequence
using an ASR system and the recognized phone sequence is
compared with a canonical sequence using a weighted finite
state transducer (WFST). In the next step, a sparse linear
model incorporated with the phonological knowledge from the
first step is used for error prediction. However, the experiments
are conducted on a limited set of isolated words and this
method would not be able to handle words that are not used
in the analysis.

In [13], errors in the dysarthric speech are classified as
articulatory errors and recognition errors through a likelihood
analysis, using product of Gaussians technique. However,
here, again, when developing a speaker-specific pronunciation
dictionary, only the articulatory errors are considered, leaving
behind the recognition system errors.

In [14], a speaker adaptation-based continuous dysarthric
speech recognition system is trained for dysarthric speakers
in the Nemours database [15]. Errors that could occur for

each dysarthric speaker are analyzed using a recognition
system trained on unimpaired speakers’ data, and corrected
using metamodels and WFSTs. Although this technique shows
promising results, the errors that are modeled using WFSTs
are obtained by comparing the actual transcription of the
sentence with its recognized transcription from the ASR
system. However, if the ASR models are not accurate, the error
patterns observed may not be consistent for all examples of
the same sentence. Therefore, the confusion transducer may
not be accurate. Further, this method can be efficiently used
only for utterances that are framed with the same words and
syntax as the training data (as in Nemours [15]). However,
if this technique is used for a large vocabulary system, for all
possible syntaxes, it will result in a huge confusion transducer,
with several possible outcomes for a single phone, specific to
each dysarthric speaker. This could in turn result in an increase
in word error rate.

Our current research work aims to address the issues in
existing methods by studying phone characteristics (error
pattern) of each dysarthric speaker, in an unrestricted syntax
of sentences, and test them with a different set of utterances.
The intuition behind this work is that when articulation errors
are consistent they are predictable [14], [16]. These predictable
errors that are consistent for a specific speaker are more likely
to improve the performance of the DSR system. Initially,
phone error characteristics of each dysarthric speaker is stud-
ied through a three-level cascaded analysis. As an outcome of
this analysis, the pronunciation errors are distinguished from
the modeling errors, unlike in [14]. Distinguishing between the
errors can aid in providing proper speech therapy to dysarthric
speakers, based on their articulatory errors. Further, if the
accuracy of the recognition system is improved, then only the
difference in the modeling errors would have to be handled,
while the articulatory errors would remain unaltered. Both
these errors are modeled in the current work, using a phone
confusion transducer, to correct erroneous text from the DSR
system. Further, since the phone characteristics are studied in
an unrestricted syntax of sentences, in future, if the vocabulary
size of the AASC has to be increased, the phone confusion
transducer can be left untouched and only the reference
transcriptions for the new words would have to be added.

The rest of the paper is organized as follows: Section II
discusses speech corpora used in the current work. Section III
describes a three-level cascaded error analysis. Section IV
provides a detailed account of the components of the AASC
aid and the performance of the aid at each stage. Finally,
Section V concludes the paper.

II. SPEECH CORPORA

The experiments in the current work are validated using
two dysarthric speech corpora, namely Tamil dysarthric speech
corpus developed by Mariya Celin et al. [17] and Nemours
database [15]. The Nemours database includes dysarthric
speech data from 10 dysarthric speakers having varying
speech intelligibility who have uttered 74 sentences each. In
order to develop a speaker adaptive system for the Nemours
dysarthric speakers, TIMIT speech corpus [18] is also used.
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The TIMIT speech corpus contains speech data recorded from
630 speakers of eight major dialects of American English.
Each speaker has recorded 10 phonetically rich sentences. The
Nemours and the Tamil speech corpus contain 38 phones each
(23 are common to both languages and the rest are unique to
each language) and the phones are represented by the IPA
notation in the current work. A brief description of the Tamil
dysarthric speech corpus is given below:

A. Tamil Dysarthric Speech Corpus

The Tamil dysarthric speech corpus contains speech data in
Tamil, from 22 dysarthric speakers (17 male and 5 female)
having cerebral palsy with spastic quadriplegia or diplegia.
Of these 22 dysarthric speakers, 12 belong to the age group
of 19 to 37 years, 5 between 15 and 18 years and, 5 between
12 and 14 years. The corpus also includes 10 unimpaired
speakers (5 female and 5 male), of different age groups,
between 12 and 30 years. These speakers have recorded
365 utterances each, consisting of 103 words and 262 sen-
tences (containing 2 to 6 words). These utterances are for-
mulated such that there are sufficient examples for all the
phones. The words are chosen such that the effect of the
phone articulatory errors can be observed at the beginning,
middle, and end of a word. These sentences do not have
a fixed structure or syntax and contain a combination of
common and uncommon Tamil phrases. Tamil has a total
of 40 phones, of which the corpus includes phrases formulated
using 38 phones, as the remaining two phones (/f/ and /au/)
occur very rarely in the language.

The dysarthric speech data was collected in collaboration
with the National Institute for Empowerment of Persons
with Multiple Disabilities (NIEPMD), prior to which signed
consents from the parents of the dysarthric speakers were
obtained. The recordings are performed in two sessions,
in a laboratory environment, at a sampling rate of 16 kHz.
Dysarthric speakers, who could not produce connected speech
with ease, uttered sentences with a maximum of up to 6 words
in sequences of 2 to 3 words, some words of a sentence
were uttered in isolation. Severe dysarthric speakers uttered
all words in each sentence in isolation. The corpus includes
time-aligned word and phonetic transcriptions. These pho-
netic transcriptions are initially derived using forced Viterbi
alignment procedure, as described in [19], and then manually
corrected. For severe speakers, phone-level segmentation is
performed based on intelligible consonants in the utterance.
Of the 22 dysarthric speakers from whom the data was col-
lected, experiments are performed on 20 dysarthric speakers,
as one of the mild dysarthric speakers left after session 1,
and marking the time-aligned phonetic transcription for one
of the severe dysarthric speakers was difficult, due to the
presence of only vowel sound units. Of these 20 dysarthric
speakers, 7 are classified as mild, 10 as moderate, and 3 as
severe dysarthric speakers. Classification in terms of degree of
dysarthria is based on the speech intelligibility scores obtained
from a speech therapist at NIEPMD and a speech intelligibility
assessment test [17], conducted using listeners with phonetic
expertise, in a laboratory environment.

Fig. 1. Block diagram for identifying speaker-specific articulation errors.

III. ARTICULATORY AND MODELING ERROR ANALYSIS

As discussed in Section I, any DSR system is prone to,
(a) pronunciation or articulatory errors and (b) recognition
system or acoustic modeling errors. Therefore, the follow-
ing section attempts to identify the errors specific to each
dysarthric speaker and to distinguish between the consis-
tent and predictable articulatory errors and modeling errors.
To accomplish this, a three-level cascaded analysis is per-
formed, that involves (i) a perceptual analysis, to identify the
phones that are in error, (ii) a product of formant Gaussian-
based acoustic similarity analysis, to validate the perceptual
analysis, and finally, (iii) an ASR-based acoustic modeling
analysis, to distinguish between these two errors.

Block diagram in Fig. 1 shows the complete process
involved in identifying and distinguishing the articulatory
errors from the acoustic modeling errors. Initially, a perceptual
analysis is performed on dysarthric speech data to identify
the phones that are in error and their corresponding per-
ceptually similar phones. The outcome from this analysis is
used in product of formant Gaussians-based acoustic similarity
analysis, to quantify subjective analysis. A list of acoustically
similar phones is obtained from this level. Finally, in the third
level, an acoustic modeling analysis is performed. The errors
that are consistent across all three analyses are considered to
be the articulatory errors and the remaining erroneous phones,
common to the product of formant Gaussian-based analysis
and the ASR-based analysis, are considered to be the acoustic
modeling errors. For this analysis, 200 sentences from the
Tamil dysarthric corpus and 54 sentences from the Nemours
database are used for each dysarthric speaker.

A. Perceptual Analysis

Perceptual analysis is performed on the Nemours and
the Tamil dysarthric speech corpora, containing a total
of 30 dysarthric speakers, with 30 expert listeners trained in
phonetics, in a laboratory environment. Each listener is given
a subset of dysarthric speakers to analyze and each dysarthric
speaker is analyzed by three unique expert listeners. The
dysarthric speech utterances are played back as many times
as required to note down the phones that are in error and the
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corresponding type of error (substitution, deletion, or inser-
tion), for each dysarthric speaker. Also, spectrograms of
the erroneous phones in each utterance are compared with
the corresponding spectrogram of the phone uttered by an
unimpaired speaker. Errors that are common across the all
3 expert listeners alone are considered for further analysis.
The agreement between the listeners is measured using Fleiss
kappa measurement and the kappa value is found to be 1, that
correspond to perfect agreement between listeners. Following
are different error patterns observed from this perceptual
analysis:

• Substitution errors: Phones that are substituted by each
dysarthric speaker are noted separately along with their
corresponding substitutions (refer Table I). These errors
are grouped into three categories as discussed below:

(i) Fixed substitutions: In this category, certain phones
are always replaced by a set of specific phones,
irrespective of the context in which they occur. This
characteristic is observed in a few severe dysarthric
speakers, as they tend to substitute certain phones
with phones that they are able to articulate with ease.

(ii) Context-dependent substitutions: Phones of this
category are substituted by different phones in dif-
ferent contexts and in some contexts they also retain
their own identity. The most common type of sub-
stitution that occurs in both corpora is substitution
of a consonant in a CV (consonant-vowel) cluster
by its adjacent vowel unit.

(iii) Random substitutions: In most occurrences,
phones of this category retain their identity. How-
ever, some examples of these phones are substituted
by different ones, depending on convenience of the
speaker and influence from the previously uttered
context, and are hence considered to be random
substitutions.

• Insertion and deletion errors: Fricatives, stops, and a
few nasal sounds are observed to be inserted in both
the corpora. However, these insertions do not occur
frequently. Word-end deletions for sounds /t/ and /l/ are
the most common deletion errors, however, they are still
random and infrequent.

From the observations noted by the experts, the number
of phones deleted, inserted, and substituted are consolidated.
It is inferred that insertion, deletion, and substitution errors
contribute to 19%, 12%, and 69% of the total number of errors,
respectively, in the Tamil dysarthric speech corpus and 4%,
16% and, 80% of the total number of errors in the Nemours
dysarthric corpus. The percentages across the categories of
substitution errors varies depending on the severity of the
dysarthric speaker.

Following are the overall observations made from the per-
ceptual analysis: (i) substitution errors are the most dominant
form of errors, (ii) consonant sound units are subject to errors
more often than vowels, which might be due to the fact that
consonants require more complex articulatory movements than
vowels, (iii) consonants are substituted by both the vowels
and consonants, whereas the vowels are substituted by other

vowels (refer Table I), (v) though deletion and insertion errors
can be perceptually observed, they are difficult to quantify as
discussed in [20].

Since substitution errors are the most dominant form of
errors for all the 30 dysarthric speakers, analysis based on
substitution errors will be discussed further.

In this first level of analysis, a list of speech sounds exhibit-
ing substitution error and their corresponding substituted
phones are noted for all 30 dysarthric speakers. To validate the
results of the perceptual analysis, a second level quantitative
analysis is performed as discussed below.

B. Product of Formant Gaussian Analysis

The product of Gaussians (PoG) was initially proposed
in [21] for bias estimation in a classifier and later used
in [22] and [13] for acoustic similarity analyses. Since this
approach showed promising results in identifying acoustically
similar phones, it is used in the current work as well, to quan-
tify the results of the perceptual analysis based on acoustic
similarity. However, while previous methods [22], [13] oper-
ated in the likelihood space, the current work operates in the
feature space. This is beneficial since the accuracy of the
analysis is independent of the accuracy of the phone models.

For the PoG analysis, formant frequencies (F1, F2, and F3)
that uniquely define each phone are initially derived using
linear predictive analysis. Using these formant frequencies,
formant Gaussian distributions are computed. The acoustic
similarity or dissimilarity between the erroneous phones of
dysarthric speaker and the phones of unimpaired speaker
is derived based on the amount of overlap between their
formant Gaussians. Consider a phone, /T/ (unvoiced fricative),
belonging to the context-dependent substitution category for
a severe dysarthric speaker in the Tamil dysarthric speech
corpus. Following are the steps involved in identifying the
phones that are acoustically similar to this erroneous phone:

Step 1 (Choosing the Unimpaired Speaker): To find the clos-
est unimpaired speaker, apart from age, gender, and dialect,
formant distributions (considering all the examples and all
frames in each example) between the phones of a dysarthric
speaker and corresponding phones uttered by all the available
unimpaired speakers are considered. The unimpaired speaker
who had highest number of closest phones based on percentage
overlap (discussed in Step 5) between the formant distributions
with the dysarthric speaker is chosen as the closest unimpaired
speaker. For Nemours database normal speakers from dialect
2 of TIMIT speech corpus (as dysarthric speakers of Nemours
and dialect 2 of TIMIT belong to the North American region
they both are expected to share the same dialect) and for Tamil
dysarthric speech corpus unimpaired speakers from the same
corpus are chosen for analysis.

Step 2 (Formant Frequency Extraction): Next, formant fre-
quencies (F1, F2, and F3) are estimated frame-wise, from all
examples of the erroneous phone for the dysarthric speaker and
all examples of all phones for the unimpaired speaker. A linear
prediction-based formant extraction method is used, with a
linear predictor of order 20. To handle the ambiguity that arises
in estimating formant frequencies, due to spurious peaks in the
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LP spectrum, frequencies that are consistent across all frames
of all examples of each phone are considered.

Step 3 (Computing Formant Gaussian Distributions):
With the extracted formants, formant Gaussian distributions
NFis (μFis , σ

2
Fis

) are derived for the dysarthric and the unim-
paired speaker, where Fi denotes the i th formant frequency
and s denotes the identity of the speaker.

Step 4 (Computing the Product of Formant Gaus-
sians (PoG)): Using the formant Gaussian distributions
(from step 3), the PoG is computed with the dysarthric
speaker’s phone and phones of the corresponding unim-
paired speaker. The product of formant Gaussians [21],
Ndu(μdu, σ

2
du), where d and u represent the dysarthric and

unimpaired speaker respectively, is given by,

Ndu(μdu, σ
2
du) = NFiu (μFiu , σ

2
Fiu ).NFid (μFid , σ 2

Fid ), (1)

where i = 1, 2, 3
The perceptual analysis revealed that an erroneous vowel

is substituted by another vowel and an erroneous consonant
is substituted by another consonant or a vowel. Therefore,
if the phone considered is a vowel, PoG is computed with all
vowels of the unimpaired speaker. On the other hand, if it is
a consonant, like in the case considered, the PoG is computed
with vowels and consonants of the unimpaired speaker.

Step 5 (Calculating the Amount of Overlap): With the mean,
μdu , normalized amount of overlap, O N

Fidu
, is calculated to

observe the acoustic similarity between the erroneous phone
of the dysarthric speaker and the phones of the unimpaired
speaker. The normalized amount of overlap, between the two
formant Gaussians, O N

Fidu
, is,

O N
Fidu

= OFidu

σFid

σFiu
(2)

where the amount of overlap, OFidu , between the two formant
Gaussian distributions is given by,

OFidu = σFiu

σFid
e
−

[
(μdu−μFiu )2

2σ2
Fiu

+ (μdu−μFid
)2

2σ2
Fid

]
(3)

where i = 1, 2, 3
Step 6 (Formant Overlap Threshold Condition): Finally,

a threshold for the amount of overlap is chosen empirically
to identify the acoustically similar phones. The threshold is
given by,

O N
F1du

∧ O N
F2du

∧ O N
F3du

>= 90% (4)

If the amount of overlap exceeds the threshold, the two phones
are considered to be acoustically similar. For example, in
Fig. 2 (a), for all three formants, the Gaussians satisfy the
overlap threshold condition and hence the two phones of the
unimpaired speaker are considered to be acoustically similar
to the phone of the dysarthric speaker. On the other hand,
in Fig. 2 (b), not all formants satisfy the overlap threshold,
and so these phones are acoustically dissimilar and less likely
to be confused with each other.

Steps 1 to 6 are repeated for all phones that exhibit substi-
tution errors, for all the dysarthric speakers in both corpora.

Fig. 2. Amount of overlap (ON
Fidu

) between formant Gaussians of /Ù/ of

a severe dysarthric speaker and (a) /k/ and /g/, (b) /m/ of an unimpaired
speaker.

For the phone considered, /T/, the phones that satisfy
the formant threshold condition are shown in Table I. It is
observed that some of these phones are identified as errors in
the perceptual analysis as well. The remaining phones that also
satisfy the threshold may indicate the recognition errors. The
significance of these phones will be discussed further in the
upcoming third-level of analysis, which is an acoustic model-
ing analysis, to further validate and identify the consistency in
errors, and also to identify the modeling or recognition errors.

C. ASR-Based Acoustic Modeling Analysis

For this analysis, isolated style (phones are trained and
tested in isolation) context-independent and context-dependent
speech recognition systems are initially trained. For analysis
on the Tamil dysarthric corpus, with both recognition systems,
65% of the analysis data is used for training and the remaining
for evaluation. For the Nemours dysarthric speech corpus,
due to data insufficiency, speaker-independent models are
trained using the data from unimpaired male speakers of the
DR2 region in the TIMIT speech corpus [13] and the 65% of
the analysis data from the Nemours database is used to adapt
models to each dysarthric speaker.

1) Isolated Style Context-Independent Analysis: Initially,
Mel frequency cepstral coefficients (MFCC) are extracted
from the training data for both Tamil and TIMIT speech
corpora. Context-independent HMMs (speaker-dependent for
Tamil and speaker-independent for TIMIT) are then trained
with 3 states and a varying number of mixture components per
state, based on the number of examples for each phone. The
trained TIMIT context-independent HMMs are then adapted
to each dysarthric speaker in the Nemours dysarthric speech
corpus, using maximum a posteriori (MAP) adaptation algo-
rithm. Then, the phones exhibiting substitution error are tested
against their acoustically similar phone models, derived from
the PoG-based analysis, to validate the previously obtained
articulatory errors. The remaining phones are tested against
all other phone models to identify the recognition errors.

2) Isolated Style Context-Dependent Analysis: A context-
dependent-based isolated style speech recognition system is
also trained to analyze the errors. A decision tree-based
clustering is used to handle the unseen context-dependent
HMMs. For Nemours, 255 context-dependent HMMs common
to both TIMIT and Nemours are trained using the TIMIT
speech corpus and adapted to each dysarthric speaker of the
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TABLE I
AN ILLUSTRATION OF THE SUBSTITUTED PHONE LIST FOR TAMIL AND NEMOURS DYSARTHRIC SPEAKERS IN MILD, MODERATE AND, SEVERE

CLASS USING PERCEPTUAL, PRODUCT OF GAUSSIANS BASED FORMANT FREQUENCY AND, AUTOMATIC SPEECH RECOGNITION ANALYSIS

Nemours database. For the Tamil dysarthric speech corpus,
1741 context-dependent HMMs are trained. This system is
also tested similar to the context-independent system and it is
observed that there is a reduction in the number of modeling
errors with the context-dependent system, when compared
to the context-independent system, due to the addition of
contextual information.

Table I shows the list of substituted phones obtained through
perceptual, PoG-based acoustic similarity, and isolated style
ASR analyses. The list of phones that are found to be common
across all the three analyses are considered to be substituted
phones due to speaker-specific articulation or pronunciation
errors. The phones identified to be erroneous in both, the PoG
and the isolated style ASR analyses, are considered to exhibit
acoustic modeling error.

The benefits of distinguishing between articulatory and
modeling errors are two fold. (i) The knowledge of speaker-
specific articulatory errors would aid in providing appropriate
speech therapy to dysarthric speakers based on their errors.
(ii) As the modeling accuracy is improved, the number of
acoustic modeling errors could be reduced to a greater extent,
while the speaker-specific articulatory errors would still prevail
due to the neuro-physiological conditions of the speakers.
If the errors are not distinguished, then, when the model-
ing accuracy is improved, the entire error analysis and the
weight computation process (described below) would have to
be repeated. However, distinguishing the errors would make
allowances for the analysis and modification of the modeling
errors alone.

In order to correct articulatory and modeling errors,
a speaker-specific phone confusion transducer for both
context-independent and context-dependent systems would
have to be developed, for which weights are to be computed
for each phone. These weights are computed based on the
isolated style recognition analyses, as described below.

Weight Calculation: Weights are calculated for both articu-
latory errors and recognition errors, based on the performance
of the recognition system, for all 30 dysarthric speakers,
as follows:

w = 1 − pk
i j (5)

where pk
i j refers to probability that phone j is substituted by

phone i , for dysarthric speaker, k, and is given by

pk
i j = number o f occurrences of phone i

total number of examples o f phone j
(6)

The WFST is designed to choose the lowest path. Weights
for each substituted phone, of each erroneous phone, are
calculated based on both context-independent and context-
dependent analysis. These weights are then used to create
context-independent and context-dependent phone confusion
transducers to correct errors that appear in the text derived
from the speech recognition system of an AASC aid. The
details of the AASC aid are elaborated in the following section.

IV. AUGMENTATIVE AND ALTERNATIVE SPEECH

COMMUNICATION AID

An augmentative and alternative speech communica-
tion (AASC) aid consists of a speaker-dependent dysarthric
speech recognition (DSR) system, an error-correction sys-
tem, and a text-to-speech synthesis system, as shown in
Fig. 3. Dysarthric speech is initially recognized by a speaker-
dependent continuous DSR system. The erroneous text from
the DSR system is then corrected using a speaker-specific
weighted finite state transducer (WFST), whose weights are
computed based on the speaker-specific error analysis, dis-
cussed in Section III. Finally, the error-corrected text is synthe-
sized using a text-to-speech synthesis system. The components
of the AASC system are described as follows:
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Fig. 3. Block diagram for augmentative and alternative speech commu-
nication aid.

A. Speaker-Dependent Continuous Dysarthric Speech
Recognition (DSR) Systems

The first component involved in an AASC aid is a DSR
system. Two continuous dysarthric speaker-dependent DSR
systems, namely (i) a context-independent (CI) DSR sys-
tem, with phone-level bigram statistics, and (ii) a context-
dependent (CD) DSR system, are trained for the 20 dysarthric
speakers in the Tamil dysarthric speech corpus. For the
Nemours dysarthric speech corpus, owing to the limited
amount of data available, speaker-adaptive DSR systems,
namely (i) a CI system with phone-level bigram statistics, and
(ii) a CD system are developed.

For training, 200 sentences from the Tamil dysarthric speech
corpus and 54 sentences from the Nemours dysarthric speech
corpus are used for each dysarthric speaker. For testing,
remaining 165 Tamil utterances and 20 Nemours utterances
are used. Performances of these speech recognition systems,
for each dysarthric speaker, is evaluated through phone error
rate (PER), in percentage, given in equation 7:

P E R = S + D + I

N
∗ 100% (7)

where, N is the total number of phones, and D, S, and I
are the number of deleted, substituted, and inserted phones,
respectively.

A description of the continuous speech recognition systems,
trained for the two corpora, is as follows:

1) Tamil Dysarthric Speech Corpus:

• Context-independent (CI) system For the speaker-
dependent CI DSR system, CI HMMs are trained, with
the dysarthric speakers’ data, with 3 states and a vary-
ing number of mixture components per state, based on
the number of examples for each phone. Phone-level
bigram statistics are derived and a decoding network is
created using these bigram statistics [23]. Each speaker-
dependent system is tested and the recognized text is
evaluated using equation 7. The performance of this
system is shown in Table II (column 2 and 9) for all
the 20 dysarthric speakers.

• Context-dependent (CD) system Context-dependent
HMMs are trained, with 3 states and 5 mixture com-
ponents per state, to include the contextual information.

Fig. 4. Phone confusion transducer for the word “balam” of a Tamil mod-
erate dysarthric speaker (a) context-independent level and (b) context-
dependent level.

Number of models in the system is as mentioned in
Section III-C. Performance of this system is shown in
column 4 and 11 of Table II and it is observed that the
PER obtained is less than that obtained with the CI system
by up to 27.72%.

2) Nemours Dysarthric Speech Corpus:

• Context-independent (CI) speaker adaptive system For
the CI speaker-adaptive system, unimpaired male speak-
ers from the TIMIT speech corpus (DR2) are chosen for
training speaker-independent context-independent mod-
els. These context-independent models are then adapted
to each dysarthric speaker using MAP adaptation. Phone-
level bigram statistics are used here too. For adaptation,
54 utterances from each of the dysarthric speakers in the
Nemours database are used. Performance of the system
is tabulated in Table II (column 9).

• Context-dependent (CD) speaker adaptive system
Speaker-independent CD models are trained as discussed
in Section IV-A.1, for the TIMIT speech corpus (DR2)
and these are adapted to the Nemours dysarthric speakers,
individually. This system reduces the PER by up to
16.26%, when compared with the speaker-adaptive CI
system (refer to Table II (column 11)).

From the above discussions, it is observed that the errors
due to acoustic modeling are reduced to a greater extent in
the CD DSR systems, as reflected by the PERs in Table II.
To improve the performance of these systems further, obser-
vations from the error analysis, discussed in Section III, have
to be incorporated, as discussed below.

B. Speaker-Specific Error Correction System

The errors of the DSR system can be reduced by means
of a speaker-specific error correction system, which makes
use of a phone confusion transducer, created using weighted
finite state transducers (WFSTs). In the current work, input
symbols in the WFST refer to the erroneous phones, output
symbols refer to their acoustically similar phones, and weights
refer to the weights calculated in Section III-C. Steps involved
in developing the transducer and correcting the errors are as
follows:
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TABLE II
DSR PERFORMANCE IN %PER AND %WER FOR BASELINE DSR AND WFST POST-PROCESSED DSR SYSTEMS (T - TAMIL DYSARTHRIC

SPEAKERS; N - NEMOURS DYSARTHRIC SPEAKERS; M - MILD; MOD - MODERATE; S - SEVERE DYSARTHRIC SPEAKERS)

Fig. 5. WFST (a) Reference transducer, (b) Composed transducer.

Step 1 (Phone Confusion Transducer): A phone confusion
transducer must correct the insertion, deletion, and substitution
errors that are expected to appear in a recognized text, leaving
the phones (symbols) that are recognized correctly unchanged.
To correct substitution errors, if input symbol ‘x’ is known to
be substituted by ‘y’, the WFST is represented as ‘y:x/w’,
where ‘w’ is the corresponding weight [24]. For the insertion
of a symbol ‘x’, the WFST is represented as ‘<eps>:x/w’ and
the deletion of a symbol ‘x’ is represented as ‘x:<eps>/w’.
To handle the correctly recognized symbols, the WFST is
represented as ‘x:x/w’.

The WFST is designed to derive the output text based on the
lowest weight (minimum edit distance algorithm) associated
with it. A phone might be recognized correctly or erroneously.
Therefore, for including the chances of its correct recognition,
a minimum weight of zero is assigned to all the phones. For
the least dominant errors, namely for insertions and deletions,
(as discussed in Section III-A) highest weight of 1 is assigned.
For substitution errors, the weights computed in Section III-C
are used.

For each of the dysarthric speakers (20 Tamil and
10 Nemours), a separate speaker-specific phone confusion
transducer is developed. Phone confusion transducers for the
context-independent and context-dependent-based DSR sys-
tems, discussed earlier, are developed for comparison.

As an example, the phone confusion transducers for the
word “balam” (meaning strength) (containing the phones, /a/,
/b/, /l/, /m/) are shown in Fig. 4. It can be observed that
the number of confusions in the context-dependent transducer
in Fig. 4 (b) is less than those in the context-independent
transducer in Fig. 4 (a).

Step 2 (Reference Transducer): Word-reference transducers
are created for all the unique words in the speech corpus,
as shown in Fig. 5 (a). If vocabulary size is to be increased
later, only the word-reference transducers have to be added
to the available ones, while the speaker-specific confusion
transducers, derived in Step 1, need not be modified.

Step 3 (Composition Transducer): The phone confu-
sion transducer in Fig. 4 (a) and the reference transducer
in Fig. 5 (a) are to be composed, as shown in Fig. 5 (b).
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Fig. 6. (a) Test FST for the word “balam” from the DSR output and
(b) Output FST after minimum edit distance algorithm.

Step 4 (Union Transducer): The composed transducers are
then converted to a single union transducer. For Tamil, it is
a union of 780 composed transducers and for Nemours, it is
112 composed transducers.

Step 5 (Testing): The recognized text from the various
DSR systems discussed in Section IV-A are given as test
FSTs, as shown in Fig. 6 (a). The errors (insertions, deletions,
and substitutions) in the test FSTs are corrected by comput-
ing minimum edit distance between the test FSTs and the
union WFST, to obtain the actual word in the output FST
(refer Fig. 6 (b)), using equation 8.

Wc = argmin[Edist(P1 ∪ P2 ∪ P3 ∪ · · · ∪ Pn)] (8)

Here Wc refers to the corrected output word and P1,
P2, . . . , Pn refer to the n (780 for the Tamil corpus and 112 in
the Nemours corpus) entities (composition transducers) in the
union WFST. The output from the FSTs (refer Fig. 6 (b)) are
evaluated in terms of PER, using equation 7.

1) Results and Discussions: Table II (columns 3, 5, 10, 12)
shows recognition performance after correcting the errors
using WFST for the recognized text from the various speaker-
dependent speech recognition systems trained for both the
speech corpora. Performance is measured based on the phone
error rate (PER), given in equation 7.

The current work has reduced the PER by up to 11.69% for
mild, 24.13% for moderate, and 12.56% for severe dysarthric
speakers, when compared to that of the baseline DSR systems,
for the Tamil dysarthric speech corpus. The proposed system
gives a reduced PER for moderate dysarthric speakers when
compared to mild and severe. Presumably, it is because severe
speakers are too unintelligible to improve much, and mild
dysarthric speakers are already quite intelligible to improve
further. In Nemours, for mild speakers, the reduction in PER,
compared to the baseline DSR system, is up to 30.86%, for
moderate, 32.39%, and for severe dysarthric speakers, 22.88%.
It is observed that the error rates obtained for the Tamil corpus
are less than those obtained for the Nemours database. This
could be owing to the use of speaker-dependent systems for
the former corpus and speaker-adaptive ones for the latter. The
greater improvement in performance, when compared with the
baseline system, with the Nemours database, than with the
Tamil database, can be attributed to the restricted syntax of
the utterances in the former corpus.

The performance in Table II is in terms of the number
of phones correctly or incorrectly recognized. However, from
the error-corrected text, three possibilities can be observed,
namely (i) incorrect, (ii) partially correct, and (iii) completely
correct utterances. To improve the performance further, from
the partially correct utterances, a word bigram FST is con-
structed for Nemours and the Tamil corpus individually. This
bigram FST is composed with the union FST discussed in

Section IV-B and it is tested with the test FST. Table II shows
the results obtained after composing with word bigram FST
for both context-independent and context-dependent systems,
and the performance is measured in terms of word error
rate (WER).

The performance of the current work is compared with [14]
(described in Section I). Here, the Nemours dysarthric speech
corpus is used and the WER of a context-independent speech
recognition system, with WFST-based post-processing, for low
intelligibility speakers (RK, RL, BV, BK, SC) is mentioned
to be up to 48% and for high intelligibility speakers (BB,
FB, JF, LL, MH), up to 26%. In the current work, (refer to
Table II column 13) the context-independent system results
in a WER that is as low as 32.83% and 23.41%, for low
and high intelligibility speakers, respectively. The context-
dependent system further reduces the WER to 30.83% and
20.83% (refer Table II column 14), which is 17.17% and
5.17% lower than that obtained in [14], for low and high
intelligibility speakers, respectively.

An AASC aid is complete only when the recognized text
is synthesized as speech that is intelligible compared to the
original dysarthric speech. The text-to-speech synthesis system
used to accomplish this is described below.

C. Text-to-Speech Synthesis System

An HMM-based text-to-speech synthesis system (HTS) is
used to synthesize the error corrected text from the WFST.
Since the Tamil dysarthric speech corpus has both male
and female dysarthric speakers and Nemours has only male
dysarthric speakers, 3 TTS synthesizers are built, one each for
Tamil male, Tamil female, and English male speakers.

For the training phase in Tamil TTS systems, three hours
of Tamil speech data [19] each from an unimpaired male and
female speaker is used. For Nemours, one hour of speech data
each, from 3 male speakers of the CMU Arctic database [25]
is used. HMMs (speaker-dependent for Tamil and speaker-
independent for English) with 5 states and a single mixture
component per state are trained with 108-dimensional feature
vectors, consisting of Mel generalized cepstral coefficients
and log fundamental frequency. The error-corrected texts,
corresponding to all the test utterances, derived from the
WFST, are synthesized.

The synthesized speech signals, for both dysarthric speech
corpora, are tested for intelligibility, through a listening test.
For the test, 25 utterances per dysarthric speaker are evaluated
by 37 expert listeners, whose ages range between 23 and
35 years, in a laboratory environment. Each expert assesses
6 dysarthric speakers’ natural and synthesized speech data,
such that all the 30 dysarthric speakers are assessed by at
most 7 different listeners. The listeners are asked to write
the text they perceive for both the natural dysarthric and the
synthesized utterances. A WER is then computed manually,
for natural and synthesized dysarthric speech. Table III shows
results of the intelligibility analysis and it is interesting to
note that this technique of correcting error through phonolog-
ical analysis has improved the intelligibility score for severe
dysarthric speakers by reducing the WER to up to 41.52%,
from 100%. The agreement between the listeners is found to
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TABLE III
WORD ERROR RATE (WER) FROM SUBJECTIVE INTELLIGIBILITY TEST

(T - TAMIL DYSARTHRIC SPEAKERS; N - NEMOURS DYSARTHRIC

SPEAKERS; M - MILD; MOD - MODERATE; S - SEVERE

DYSARTHRIC SPEAKERS

have a kappa value of 0.435, meaning, there is a moderate
agreement between the listeners.

V. CONCLUSIONS

The current work focuses on the development of an AASC
aid for dysarthric speakers. Major issue in the development of
any AASC aid is in correcting the errors in the text derived
from the DSR system. These errors may occur owing to inabil-
ity of the dysarthric speaker to utter certain phones correctly
(articulatory or pronunciation error) or due to inaccurate mod-
els in the recognition system (modeling error). While existing
approaches mostly focus on eliminating the articulatory errors,
the current work focuses on handling modeling errors as well.
Further, even though certain techniques do attempt to handle
both errors, they do not differentiate between them, unlike in
the current work. Also, the analyses in the current work are not
restricted to a fixed syntax of sentences. In order to identify
and distinguish between the two errors, a three-level cascaded
analysis is performed. Using the results of this analysis, phone
confusion transducers are trained for each dysarthric speaker,
to correct the errors in the text derived from the recognition
system. The corrected text is finally synthesized by HMM-
based TTS systems to yield intelligible speech.

Though the proposed AASC technique is observed to
improve the intelligibility of dysarthric speech considerably
in all the three category of dysarthric speakers it also faces
few challenges. A substantial amount of time is required for
dysarthric speech data collection and phone-level annotation.
To overcome this issue we would like to collect speech data
with multiple examples for words using array microphones and
apply multi-resolution features that are expected to improve
the performance further. Though AASC makes use of PoG and
ASR-based acoustic analysis to validate the results obtained

through perceptual analysis a complete automated technique
is required to differentiate articulatory and modeling errors.
Based on the feedback from the AASC users the authors would
like to build AASC aids that are specific to their occupation
and independent living.
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