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Abstract

We present CALICO, a method to fine-tune Large Language Models (LLMs) to
localize conversational agent training data from one language to another. For
slots (named entities), CALICO supports three operations: verbatim copy, literal
translation, and localization, i.e. generating slot values more appropriate in the
target language, such as city and airport names located in countries where the
language is spoken. Furthermore, we design an iterative filtering mechanism to
discard noisy generated samples, which we show boosts the performance of the
downstream conversational agent. To prove the effectiveness of CALICO, we
build and release a new human-localized (HL) version of the MultiATIS++ travel
information test set in 8 languages. Compared to the original human-translated
(HT) version of the test set, we show that our new HL version is more challenging.
We also show that CALICO out-performs state-of-the-art LINGUIST (which relies
on literal slot translation out of context) both on the HT case, where CALICO
generates more accurate slot translations, and on the HL case, where CALICO
generates localized slots which are closer to the HL test set.

1 Introduction and Related Work

Conversational agents usually apply Intent Classification (IC) and Slot Tagging (ST) (also known as
Named Entity Recognition or NER) to infer semantics from the text of an agent-directed request (Tur
and De Mori, 2011). In order to support global user bases, these agents are often multilingual.

IC+ST training data is typically scarce, especially in multilingual settings. While Large Langauge
Models (LLMs) can perform IC+ST from few examples (e.g. Parikh et al. (2023)), lightweight
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INPUT:
<language> German </language>
<domain> travelinfo </domain>
<intent> flight </intent>
<include>
[1 translation( first class ) ] ,

[2 localization( united airlines ) ] ,

[3 localization( denver ) ] ,

[4 localization( baltimore ) ] ,

[5 translation( december seventeenth ) ]
</include>
<labels>
[1=fare_class , [2=airline ,

[3=fromloc.city_name ,

[4=toloc.city_name , [5=date
</labels>
<examples>
i need a [1 first class ] ticket

on [2 united airlines ]

from [3 denver ]

to [4 baltimore ]

scheduled for [5 december seventeenth ]
</examples>

OUTPUTS:
1. ich brauche ein [1 erste klasse ] ticket

mit [2 lufthansa ]

von [3 hamburg ]

nach [4 köln ]

für den [5 siebzehnten dezember ]

Figure 1: CALICO follows instructions to either literally translate entities (fare_class, date) or to
localize entities (airline, from_city, to_city).

models such as encoder-only Transformers (Chen et al., 2019; Xu et al., 2020) are still useful for cost-
and latency-sensitive applications that support very high throughput.

Synthetic Data Generation (SDG) from Large Language Models (LLMs) has become a popular trend
to address the data scarcity problem (Rosenbaum et al., 2023). SDG approaches relevant to the IC
and ST tasks include back-translation, (Bannard and Callison-Burch, 2005; Sennrich et al., 2016;
Edunov et al., 2018; Xie et al., 2020) paraphrasing (Kumar et al., 2020; Cho et al., 2019; Malandrakis
et al., 2019; Jolly et al., 2020; Panda et al., 2021) word replacement (Zhang et al., 2020; Dai and
Adel, 2020; Wei and Zou, 2019), and carrier phrase regeneration (Kumar et al., 2022). A related
thread is in-context generation of multilingual semantic parsing data (Rosenbaum et al., 2022a) and
multi-party dialogs (Chen et al., 2023).

In terms of cross-lingual SDG for IC+ST, Machine Translation with Slot Alignment (MT-SA) is a
strong baseline (Xu et al., 2020), however the separate alignment step a posteriori introduces noise,
which negatively impacts the quality of the generated data and the downstream task model.

Recently proposed LINGUIST (Rosenbaum et al., 2022b) avoids the alignment problem by first
machine-translating the slot values (out-of-context entities like “new orleans” or “december six-
teenth”), and then generating a slot-annotated utterance in the target language incorporating the
machine-translated slot values. (An example of LINGUIST output is “book a flight to [1 new
orleans ] on [2 december sixteenth ]”, where 1 and 2 indicate slot labels to_city and
date respectively. )

In this work, we propose CALICO for cross-lingual SDG of IC+ST training data, which resolves two
important limitations of LINGUIST (see Figure 1):

(i) Contextualized Slot Value Translation: LINGUIST translates the slots a priori and out of context,
which can lead to cascading errors, due to the translation model choosing the wrong grammatical
form in morphologically inflected languages, or choosing the wrong semantic translation altogether.
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(For example, “light” can be a noun, synonym of “lamp”; or an adjective, opposite of “heavy”; or a
verb.) By contrast, CALICO translates the slot values and carrier phrase text jointly, while producing
the same slot-annotated output format as LINGUIST to avoid the alignment problem of MT-SA.

(ii) Slot Value Localization: in real-world systems, users are more likely to ask for entities specific
to their locale, e.g. in German booking flights to or from “köln” on “lufthansa” instead of just asking
for English entities and their translations, like “denver” or a literal translation of “united airlines”.
CALICO introduces a localization operator which instructs the model to replace the value in the
source language with a localized version of the slot while translating the rest of the text around it.

To demonstrate the utility of slot value localization, we create a new human-localized (HL) version
of the MultiATIS++ test set in all 9 languages1, and benchmark CALICO compared to LINGUIST
on the 6 languages shared with our data generation model. We show that our HL test set is more
challenging that the original human-translated (HT) test set. We also show that CALICO out-performs
LINGUIST both on the original HT version, by producing more accurate slot translations with the full
sentence context, and on the new HL version by producing more relevant training data with localized
slot values like city and airport names.

Furthermore, we improve the process of selecting from among the n-best generated CALICO outputs:
instead of taking the output with lowest perplexity, we design an Iterative Filtering Mechanism (IFM)
inspired by data augmentation through weak supervision (Chen et al., 2022). We use the downstream
task model (IC+ST encoder fine-tuned on real data plus selected CALICO-generated synthetic data)
to re-select from among the n-best outputs based on matching the intent and slots requested in the
prompt. We show that the IFM improves the final IC+ST performance on the MultiATIS++ test set.

In summary, our contributions are threefold: (1) We propose CALICO to localize IC+ST training
data with controls to either copy, translate, or localize slot values; (2) we create a new version of the
MultiATIS++ non-English test set, which includes updated text and annotation with human-localized
slot values such as city and airport names, benchmark our models on it, and release the test set;
and (3) we design an iterative filtering mechanism to select model generated data and show that
it improves IC+ST performance on the MultiATIS++ test set (both original and human-localized
versions) compared to selecting the output with lowest perplexity.

2 Methodology

Like LINGUIST, CALICO is a generative Large Language Model (LLM) fine-tuned on an instruction
prompt to generate synthetic training data for IC+ST. CALICO takes inspiration from the LINGUIST
prompt, and supports additional slot operations.

2.1 CALICO Prompt Design

The CALICO prompt (Figure 1) differs from LINGUIST by adding controls at the slot level for three
operations: unchanged, indicating a verbatim copy (e.g. for flight numbers), literal translation,
and localization, i.e. replacement with a value more appropriate in the target language.

The translation operation of CALICO improves the slot translation quality compared to out-of-
context MT applied a priori to LINGUIST. For example, without any context, the word “second”
in English could be reasonably translated to Spanish as either “segundo”, “segunda”, “segundos”,
or “segundas”, depending on the plurality and grammatical gender of the Spanish noun it modifies.
Furthermore, if “second” is part of the phrase “the second of september”, then it should be translated
as “dos”, meaning “two”. CALICO attends to the entire input English sentence when generating
translated values, and therefore can disambiguate such cases.

2.2 Training the CALICO Model

Similar to LINGUIST, we fine-tune CALICO from AlexaTM 5B seq2seq on cross-lingual prompts
extracted from MASSIVE (FitzGerald et al., 2022b). See details in Section 3.2.1. Models are
finetuned for 10 epochs using a batch size of 16.

1https://github.com/amazon-science/matispp
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Figure 2: CALICO Training/Inference/Evaluation

2.3 Inference

For the target dataset, we take the English training data and instruct CALICO to generate corresponding
data in the target language. We sample 8 outputs with top_p 0.95 and temperature 1.0 and then filter
down to select only one as described next.

2.4 Iterative Filtering Mechanism (IFM)

We extend the post-processing pipeline of LINGUIST to include an Iterative Filtering Mechanism
(IFM) to select higher quality samples from among the n-best CALICO-generated outputs.

Similar to LINGUIST, we first discard any outputs that do not pass heuristic string-based validation
such as missing or extra brackets. We then apply English-IC filtering and backoff to the original
English example in case no output is valid, in order to maintain the original per-intent distribution.

In the first round, we randomly select one of the remaining CALICO outputs and fine-tune the IC+ST
task model on real English data plus the selected CALICO outputs in the other languages.

Then, we re-select from among the CALICO n-best outputs: we discard samples where the IC+ST
model hypothesis disagrees with the intent and slot labels prompted for, then randomly select a single
output again, using a different random seed to ensure that we don’t always re-select the same output.

We apply this IFM repeatedly until performance plateaus (two iterations in all of our experiments).

3 Experiments

3.1 Models

We fine-tune AlexaTM 5B seq2seq model (Rosenbaum et al., 2022b; Soltan et al., 2022; FitzGerald
et al., 2022a) as the CALICO data generaiton model. For the downstream task IC+ST model and
iterative filtering model, we fine-tune xlm-roberta-base (Conneau et al., 2020) (12 layers, 768
hidden dimension), from the HuggingFace (Wolf et al., 2020) implementation.

3.2 Datasets

We fine-tune CALICO on cross-lingual prompts extracted from MASSIVE, which contains parallel
IC+ST annotated data in 51 languages. We fine-tune on 6 languages: German, Spanish, French,
Hindi, Japanese, and Portuguese, each parallel to English.

After the CALICO data generation model is trained, we apply it on two IC+ST datasets, MultiATIS++
and MultiSNIPS, to localize training data from English into the target languages. The CALICO model
has never seen the specific intent and slot names, annotation scheme, or data conventions of the target
downstream tasks, and therefore must generalize at inference.
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3.2.1 MASSIVE

MASSIVE (FitzGerald et al., 2022b), Multilingual Amazon SLURP (SLU resource package) for
Slot Filling, Intent Classification, and Virtual-Assistant Evaluation, contains 19,521 English realistic,
labeled virtual-assistant utterances spanning 18 domains, 60 intents, and 55 slots. It is a parallel
dataset, where each English utterance is localized or translated into 50 typologically diverse lan-
guages. The dataset includes annotations on the human-chosen replacement method for each slot
(i.e. translation or localization or unchanged) for each pair of English and parallel target language
utterance. Crucially, we use these slot-level annotations in the prompts for CALICO fine-tuning so
that the model learns to follow instructions like localization (Figure 1).

Lang Eval on test data with HT slots
Lower
bound

Upper
bound

LINGUIST
(our repro)

CALICO
(No IFM)

CALICO
(IFM)

CALICO
(All Transl.)

IFM
comb all

IC Accuracy (%)
EN 97.10 97.54 97.77 97.66 97.77 97.99 97.88
DE 90.96 97.43 94.20 97.10 97.10 97.10 96.88
ES 95.09 96.76 96.76 97.32 97.77 97.43 97.54
FR 94.08 97.88 96.99 97.88 97.66 97.88 98.21
HI 85.38 94.64 90.62 92.41 95.31 92.30 94.75
JA 87.61 96.28 89.30 94.48 96.85 95.05 96.51
PT 91.63 96.88 96.21 95.98 97.10 96.32 96.65

AVG non-EN 90.79 96.65 94.01 95.86 96.96 96.01 96.76
ST F1

EN 95.73 96.01 95.69 95.71 95.85 95.76 95.68
DE 80.47 95.34 84.11 87.47 87.68 85.76 89.23
ES 81.53 87.55 84.43 86.81 88.32 87.26 87.57
FR 77.69 94.56 84.99 85.71 86.59 85.10 85.70
HI 64.45 87.81 77.88 76.92 76.32 82.69 83.04
JA 41.98 93.64 85.15 88.43 90.71 91.85 92.38
PT 50.50 92.16 84.66 81.90 83.83 81.06 83.12

AVG non-EN 66.10 91.84 83.54 84.54 85.58 85.62 86.84

Table 1: MultiATIS++ data generation performance on IC accuracy and ST F1 Score. The result is reported on
Human-Translate (“HT”) test set. The best (second best) result is bold (underlined).

Lang Eval on test data with HL slots
Lower
bound

Upper
bound

LINGUIST
(our repro)

CALICO
(No IFM)

CALICO
(IFM)

CALICO
(All Transl.)

IFM
comb all

IC Accuracy (%)
EN 97.10 97.54 97.77 97.66 97.77 97.99 97.88
DE 90.40 97.10 94.42 96.88 97.21 97.10 96.99
ES 95.54 96.43 96.88 96.88 96.76 96.76 96.99
FR 93.19 96.76 96.21 96.76 96.21 96.65 96.88
HI 86.16 93.08 91.29 92.86 94.98 93.53 95.31
JA 86.38 96.09 89.29 94.53 95.98 94.98 95.31
PT 91.52 96.09 95.54 95.20 95.76 95.54 95.98

AVG non-EN 90.53 95.93 93.94 95.52 96.15 95.76 96.24
ST F1

EN 95.73 96.01 95.69 95.71 95.85 95.76 95.68
DE 76.61 85.78 79.96 80.36 82.52 78.97 83.54
ES 71.86 76.08 74.11 83.57 85.83 78.14 84.50
FR 77.62 85.79 82.39 82.07 83.10 81.63 81.97
HI 72.84 84.93 76.52 78.62 80.79 79.99 81.17
JA 41.61 91.19 86.34 89.53 91.61 88.98 91.39
PT 77.65 90.18 83.63 82.69 85.00 81.25 84.07

AVG non-EN 69.70 85.66 80.49 82.81 84.81 81.49 84.44

Table 2: MultiATIS++ data generation performance on IC accuracy and ST F1 Score. The result is reported on
new localized version (“HL”) of the test set. The best (second best) result is bold (underlined).
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Lang
Lower
bound

Upper
bound LINGUIST CALICO

CALICO
(All Transl.)

IC Accuracy (%)
EN 99.01 98.86 98.86 99.01 98.79
ES 95.03 98.15 98.44 98.30 98.01
FR 96.59 98.58 98.72 98.44 97.94
HI 92.39 95.11 98.71 97.56 97.70

AVG non EN 94.67 97.28 98.62 98.10 97.88
ST F1

EN 93.63 95.48 95.24 95.35 95.11
ES 70.14 91.35 90.35 90.42 89.71
FR 70.47 86.73 84.35 88.81 88.53
HI 47.85 85.72 82.87 77.90 83.99

AVG non EN 62.82 87.93 85.86 85.71 87.41
Table 3: MultiSNIPS data generation performance on IC accuracy and ST F1 Score.

3.2.2 MultiATIS++

MultiATIS++ dataset extends the English-only Air Travel Information Services dataset ATIS to 9
languages via human translation. Our work focuses on the 7 languages MultiATIS++ shares with our
pre-trained model: English (EN), German (DE), Spanish (ES), French (FR), Hindi (HI), Japanese
(JA), Portuguese (PT), with 4488 (HI: 1440) training utterances, 490 (HI: 160) validation utterances,
and 893 test utterances, over 18 (HI: 17) intents and 84 (HI: 75) slots. (The test set release also
contains Turkish and Chinese.)

Since the original test set is human-translated from English, it contains only translated slot values
(e.g. for “new orleans” in English, the Spanish version would be “nueva orleans”), but not localized
entities. To showcase the effectiveness of CALICO, we create a new version of the MultiATIS++
test set in all 8 non-English languages, by asking human experts to localize the slot values for
8 slot types. Specifically, the human experts replace the original human-translated English slot
value (e.g. “nueva orleans” in Spanish) with a value more appropriate value in the target language
(e.g. “madrid”). The localized slot types are airline_code, airline_name, airport_code,
airport_name, city_name, country_name, state_code, state_name.

We also ask the experts to modify the carrier phrase text as needed to make the entire request
grammatically correct. For example, in French the experts might change the form of the definite
article “le”, “la”, “les”, or “l”’ (all meaning “the”) to match the plurality, gender, and pronunciation
of the newly chosen slot value. The rest of the slot types and text remain as they are in the original.

3.2.3 MultiSNIPS

The MultiSNIPS dataset (Stickland et al., 2023) contains human translations of the SNIPS (Coucke
et al., 2019) dataset into three languages: Spanish (ES), French (FR), and Hindi (HI).

3.3 Results

MultiATIS++ Results are shown in Tables 1 and 2, where the upper block reports IC Accuracy,
and the lower block reports ST F1 Score. Table 1 is reported on the original test set, which contains
human-translated slot values, whereas Table 2 is on our new version of the test set, where the slots
are human-localized to versions more common in the target language.

“Lower bound” indicates the IC+ST model trained only on the English training data. “Upper bound”
indicates the IC+ST model trained on MultiATIS++ training data for all 7 languages. The remaining
columns indicate IC+ST models trained on the concatenation of original English training data with
synthetic training data for the other 6 languages from one or more methods. “LINGUIST (our repro)”
is our reproduction of LINGUIST.

“CALICO (IFM)” is our candidate approach, where we apply the localization, translation, and
copy operations to specific slot values as shown in Table 6 (Appendix C), along with post-generation
iterative filtering mechanism. “CALICO (All Transl.)” is our candidate model with the translation
operation applied to all slots at inference time. In “CALICO (No IFM)”, we do an ablation setup
on the iterative filtering mechanism, where we do not perform iterative filtering. And finally in
the column “IFM Comb all”, we include the synthetic data from “CALICO (IFM)” combined with
“LINGUIST (our repro)” and “CALICO (All Translate)”.
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We primarily focus on “AVG non EN”, which is the average across the non-English languages. On
the original test set (Table 1), we find that “CALICO (IFM)” is the best performing single method on
average, surpassing LINGUIST by 2.95 points absolute on IC (from 94.01 to 96.96) and 2.04 points
absolute on ST F1 (from 83.54 to 85.58).

The improvement of CALICO over LINGUIST is reflected on most languages, however Japanese (JA)
shows the most improvement, having +7.55 / +5.56 (from 89.30 to 96.85 / from 85.15 to 90.71) points
improvement on IC / ST. This suggests that Japanese was being limited the most by the drawbacks of
LINGUIST, e.g. making translation mistakes out of context.

On the new localized test data (Table 2), both versions of CALICO improve over LINGUIST, and IFM
improves even further. With CALICO plus IFM, we improve on IC from 93.94 LINGUIST to 96.15
(for 2.21 points absolute) and ST from 80.49 LINGUIST to 84.81 (i.e. 4.32 points absolute). As with
the HT test set, the improvement is particularly large for Japanese (JA).

On both settings, we combine data from LINGUIST and both versions of CALICO, however find that
the gains are not consistently synergistic.

We see the performance improvement of CALICO over LINGUIST is directly correlated with the
“Success Rate” (Table 4 in Appendix B, filtering to keep only those outputs which pass string-matching
heuristics and IC hypothesis filtering), indicating that the data produced from CALICO is cleaner and
more usable than that of LINGUIST.

All data generation models and even the Upper Bound of including human-translated training data
perform significantly worse on the test data with human-localized slots compared to the original
human-translated test data, indicating that the human-localized test set is more challenging, and
motivating future work on conversational agent localization.

MultiSNIPS Results are show in Table 3. Here, in the AVG non EN there are small differences
overall compared to LINGUIST: CALICO (All Translate) is 0.74 points absolute worse on IC (from
98.62 to 97.88) and +1.55 points absolute better on ST (from 85.86 to 87.41). However, similarly to
the MultiATIS++ results, CALICO (All Translate) out-performs LINGUIST. All models are close to
the upper bound, however, indicating that this dataset may not be particularly challenging.

4 Conclusion and Future Work
We introduced CALICO, a novel pipeline for synthetic annotated data generation in new languages,
via fine-tuning a largescale pre-trained multilingual seq2seq model. We demonstrated that unlike
prior techniques that would translate slots out of context, CALICO can generate annotated slots based
on the context and localize them with values more appropriate to the target language . In future, we
plan to extend and leverage a reward model into a reinforcement learning setup to further improve
the quality of the generated data. We would also like to explore ways to combine the positive effects
of LINGUIST paraphrasing with CALICO localization.
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Appendix

A Prompt Comparison

INPUT:
<language> Spanish </language>
<domain> travelinfo </domain>
<intent> flight </intent>
<include>
[1 translation( pittsburgh ) ] ,

[2 translation( new york ) ] ,

[ 3 translation( 5 pm ) ]
</include>
<labels>
[1=fromloc.city_name ,

[2=toloc.city_name ,

[3=depart_time.time
</labels>
<examples>
i need a flight

from [1 pittsburgh ]

to [2 new york ]

leaving at [3 5 pm ]
</examples>

OUTPUTS:

1. necesito un vuelo
desde [1 pittsburgh ]

a [2 nueva york ]

saliendo a las [3 cinco de la tarde ]

(a) The prompt with translation operation.

INPUT:
<language> Spanish </language>
<domain> travelinfo </domain>
<intent> flight </intent>
<include>
[1 localization( pittsburgh ) ] ,

[2 localization( new york ) ] ,

[ 3 translation( 5 pm ) ]
</include>
<labels>
[1=fromloc.city_name ,

[2=toloc.city_name ,

[3=depart_time.time
</labels>
<examples>
i need a flight

from [1 pittsburgh ]

to [2 new york ]

leaving at [3 5 pm ]
</examples>

OUTPUTS:

1. necesito un vuelo
desde [1 madrid ]

a [2 barcelona ]

saliendo a las [3 cinco de la tarde ]

(b) The prompt with localization operation.

Figure 3: For the same input, CALICO can follow the instruction prompt to map city names from
English into Spanish either via literal translations (left) (“pittsburgh” → “pittsburgh” and “new
york” → “nueva york”) or via localization (right) (“pittsburgh” → “madrid” and “new york” →
“barcelona”).
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B Success Rates

Table 4: MultiATIS++ data generation Success rate.

Method Lang
Parse

Success (%)
IC Filter

Success (%)
Final

Success (%)
# Utt. from
Generation

# EN Utt.
Copied Total

LINGUIST
(our repro)

DE 91.61 78.76 72.15 3037 1172 4209
ES 91.59 80.54 73.77 3105 1104 4209
FR 92.47 73.79 68.23 2872 1337 4209
HI 89.69 79.00 70.85 2982 1227 4209
JA 72.18 76.88 55.49 2336 1873 4209
PT 92.33 83.30 76.91 3237 972 4209

AVG 88.31 78.71 69.57 2928 1281 4209

CALICO

DE 99.44 90.78 90.27 4052 436 4488
ES 99.44 94.25 93.72 4206 282 4488
FR 99.84 94.14 93.99 4218 270 4488
HI 97.82 85.16 83.30 3739 749 4488
JA 95.10 79.48 75.58 3392 1096 4488
PT 99.31 92.74 92.10 4133 355 4488

AVG 98.49 89.43 88.16 3957 531 4488

CALICO
(All Translate)

DE 99.35 91.35 90.76 4073 415 4488
ES 98.93 94.01 93.00 4174 314 4488
FR 99.64 94.43 94.09 4223 265 4488
HI 97.08 85.76 83.26 3737 751 4488
JA 94.45 82.66 78.07 3504 984 4488
PT 98.95 92.96 91.99 4128 360 4488

AVG 98.07 90.20 88.53 3973 515 4488

Table 5: MultiSNIPS data generation Success rate.

Method Lang
Parse

Success (%)
IC Filter

Success (%)
Final

Success (%)
# Utt. from
Generation

# EN Utt.
Copied Total

LINGUIST
(our repro)

ES 97.10 88.67 86.10 10846 1751 12597
FR 97.30 97.74 95.10 11980 617 12597
HI 72.86 92.34 67.28 8475 4122 12507

AVG 89.09 92.92 82.83 10434 2163 12597

CALICO

ES 99.98 90.75 90.73 11278 1152 12430
FR 99.98 97.61 97.59 12130 300 12430
HI 99.73 92.66 92.41 11487 943 12430

AVG 99.90 93.67 93.58 11632 798 12430

CALICO
(All Translate)

ES 99.98 90.96 90.94 11304 1126 12430
FR 99.99 97.45 97.44 12112 318 12430
HI 99.85 92.30 92.16 11456 974 12430

AVG 99.94 93.57 93.51 11624 806 12430
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C CALICO Slot Operations

Table 6: mATIS++ CALICO Slot Operations
Slot Operation Slot Operation

airline_code copy flight_mod translation
airline_name localization flight_number translation
airport_code copy flight_stop translation

airport_name localization flight_time translation
arrive_date.date_relative translation fromloc.airport_code copy

arrive_date.day_name translation fromloc.airport_name localization
arrive_date.day_number translation fromloc.city_name localization
arrive_date.month_name translation fromloc.state_code copy
arrive_date.today_relative translation fromloc.state_name localization

arrive_time.end_time translation meal translation
arrive_time.period_mod translation meal_code copy

arrive_time.period_of_day translation meal_description translation
arrive_time.start_time translation mod translation

arrive_time.time translation month_name translation
arrive_time.time_relative translation or translation

booking_class translation period_of_day translation
city_name localization restriction_code copy
class_type translation return_date.date_relative translation

compartment translation return_date.day_name translation
connect translation return_date.day_number translation

cost_relative translation return_date.month_name translation
day_name translation return_date.today_relative translation

day_number translation return_time.period_mod translation
days_code copy return_time.period_of_day translation

depart_date.date_relative translation round_trip translation
depart_date.day_name translation state_code copy

depart_date.day_number translation state_name localization
depart_date.month_name translation stoploc.airport_code copy
depart_date.today_relative translation stoploc.airport_name localization

depart_date.year translation stoploc.city_name localization
depart_time.end_time translation stoploc.state_code copy

depart_time.period_mod translation time translation
depart_time.period_of_day translation time_relative translation

depart_time.start_time translation today_relative translation
depart_time.time translation toloc.airport_code copy

depart_time.time_relative translation toloc.airport_name localization
economy translation toloc.city_name localization

fare_amount translation toloc.country_name localization
fare_basis_code translation toloc.state_code copy

flight translation toloc.state_name localization
flight_days translation transport_type translation
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