HAVIC Pilot Transcription

Item Name: HAVIC Pilot Transcription
Author(s): Jennifer Tracey, Stephanie Strassel, Amanda Morris, Xuansong Li, Brian Antonishek, Jonathan G. Fiscus
LDC Catalog No.: LDC2016V01
ISBN: 1-58563-751-3
ISLRN: 609-210-869-474-9
Release Date: April 18, 2016
Member Year(s): 2016
DCMI Type(s): MovingImage, Text
Data Source(s): web collection
Project(s): HAVIC
Application(s): event detection
Language(s): English
Language ID(s): eng
License(s): LDC User Agreement for Non-Members
Online Documentation: LDC2016V01 Documents
Licensing Instructions: Subscription & Standard Members, and Non-Members
Citation: Tracey, Jennifer, et al. HAVIC Pilot Transcription LDC2016V01. Web Download. Philadelphia: Linguistic Data Consortium, 2016.

Introduction

HAVIC Pilot Transcription was developed by the Linguistic Data Consortium (LDC) and is comprised of approximately 72 hours of user-generated videos with transcripts based on the English speech audio extracted from the videos. This data set was created in collaboration with NIST (the National Institute of Standards and Technology) as part of the HAVIC (the Heterogeneous Audio Visual Internet Collection) project, the goal of which is to advance multimodal event detection and related technologies.

LDC has developed a large, heterogeneous, annotated multimodal corpus for HAVIC that has been used in the NIST-sponsored MED (Multimedia Event Detection) task for several years. HAVIC Pilot Transcription supported an experiment to produce a verbatim transcript (quick and rich transcription) based on audio extracted from user-generated videos. It contains the pilot transcripts for selected MED 2011 video files as well as the associated videos.

Data

NIST designated the videos to be transcribed. Annotators generated the transcripts using XTrans, which supports manual transcription across multiple channels, languages and platforms. HAVIC transcription guidelines are included in the documentation for this release.

Each file was transcribed by a single annotator with no corpus-wide second pass. File samples from each annotator were checked for various errors, including missing transcription, improper mark-up, poor segmentation and missing/added words.

All transcription files are in .tdf format, a plain-text, flat-table format with 13 tab-delimited fields. All video files are in .mp4 format (h264), with varying bit-rates and levels of audio fidelity and video resolution.

Samples

Please view these video and transcript samples.

Updates

None at this time.

Available Media

View Fees





Login for the applicable fee